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Abstract

The paper asserts that every ontology presupposes a basic structure, Ontological Tetrade, which consists of source of predications (“modus”), different predications of the source (“modas”), restricted conditions, under which the predications are formed (“models”), and operation of forming of the predications (“projector”). V.Soloviov used projective intuition of Ontological Tetrade comparing predications with projections of the body. It seems, St.Lesniewski also used a similar intuition in a non explicit form. A new axiomatic system, Projectively Modal Ontology (PMO), is offered in the paper. I accept here almost all the logical means of the language of St.Lesniewski’s “Ontology”. Namely I accept Prothotetics without any changes, syntax of expressions of different categorial types, rules of inference with the exeption of Rule of Extensionality. Prothotetical definitions will be used without any changes. Forms of Ontological definitions will be discussed below. Instead of Lesniewski’s functor ( I shall use a 4-placed predicate Mod of the categorial type (N,N,N,(N,N)/N)/S. Expression Mod(a,b,c,f) is read as “a is moda of modus b under the model c with projector f”. Some theorems of PMO are presented with proofs. Some extensions of the primary version of PMO are considered, in particular, a Boolean Algebra on moduses, similar to Mereology of Lesniewski, is investigated. Proof of inconsistency of PMO relatively Prothotetics is considered also. 

1. Introduction

The paper is devoted to the description of one axiomatical system, which can be called as Projectively Modal Ontology (PMO). This system has two main foundations: 1) one important philosophical concept from the philosophy of Vladimir Soloviov, and 2) logical form similar to logical form of St.Lesniewski’ Ontology. 

Breafly speaking

                                 PMO = Soloviov ‘ Content + Lesniewski’ Form

Therefore, I shall say some words about Soloviov approach first of all. Further I shall explain some logical ideas of PMO.

2. Soloviov’ Ontology 

Soloviov philosophy is a sort of Platonism. There exists a Highest Being (“Unity”) and there exist infinite set of principles, which are different aspects of Unity. Together Unity and its aspects form All-Unity (therefore the title of Soloviov philosophy is also “Russian Philosophy of All-Unity”). This is the case of an ierarchial Ontology with maximum and minimum (non-being) elements. 

Let us see a typical part of the ierarchy: one more ontologically strong principle (S) and, for example, two its aspects (A1 and A2) – see fig.1.
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Soloviov used a projective intuition here, he interpreted aspects A1 and A2 as “projections” of the principal S (see also my book
). 

To clear this idea let us see an example of geometrical projections. For example, we have a 3-dimensional body B and two 2-dimensional projections P1 and P2 (see fig.2).
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Every projection Pi is made in the framework of a plane: P1 in plane (1, P2 in plane (2. We can speak that every projection is the body B under the condition of the plane of projectivity, i.e., 

                                               Pi  is  B-under-the-condition-(i

“Under the condition” is a functor, which can be called as projector. Finally we obtain

                                               Pi  =  B((i , where ( is projector

This structure can be generalised and we might to write in general case

                                               Ai  =  S(Ci  ,  where

          S is a synthesis

          Ai is an aspect of S

          Ci is a restricted condition under which Ai is formed

          ( is projector, operation of forming of aspects from synthesis and restricted conditions

I shall call these four principles, syntesis, aspect, condition and projector, as Ontological Tetrade. 

One of my basic assumptions is as follows: any Ontology presupposes an Ontological Tetrade in a definite form. I shall use special terms for all elements of Ontological Tetrade: “modus” for synthesis, “moda” for aspect, “model” for restricted condition and “projector” for projector (see fig.3).
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Modus is a principle of variety, space of possibilities

Model is a principle of restriction of variety

Moda is an element of variety, one of the possibilities

Projector is an act of restriction (transformation) of variety to an element

One need to notice that the term “model” is used not in a trivial sense here. I wanted to use one Latin root “mod”: mod-us, mod-el, mod-a. Therefore I shall use the term “modal” in the ancient sense of this word expressing an idea of any variation, mod-ification. To differ this sense from the contemporary using of the term “modal” in different modal logics I add word “projectively” to the word “modal”.

I think Ontological Tetrade is a very old philosophical structure. We can find it in Plato, in East Philosophy, etc. For example the following realisations of Ontological Tetrade in some philosophical systems can be demonstrated here
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     Super Ego
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           Libido
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Soloviov connects the idea of Ontological Tetrade with the idea of an Ontological Order (()

                                     S(Ci  (  S , i.e.

moda of modus is less or equal to modus in some ontological sense.

In particular, modus can be represented as moda of itself, i.e., there exists a such model 1S that S(1S = S.  Model 1S can be called as model unity. It is the case of absence of restricted conditions as a limited case of its zero presence.

3. Lesniewski’ Ontology

It is well known that Stanislaw Lesniewski was nominalist. Therefore the structure of his Ontology as follows (see fig.4).
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There are many strong principles (“things”), every thing is a maximum of own ierarchy. Non maximum elements of ierarchy are more weak kinds of being (general properties of things). 

I shall use symbol (L for Lesniewski’ functor ( (“jest”). Then we have

                   If (a (L b) is true, then a is a thing (strong being),

b is either 1) thing also (then (b (L a) and (a =L b) here, where (a =L b) is (a (L b ( b (L a)),                      

         or   2) property of thing (and (( b (L a) in this case)

We find an example of a relation of modus and moda here: if (a (L b) is true, then a is modus, b is moda (see fig.5).
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However Lesniewski does not deal explicitely with models and projectors in his Ontology. Nevertheless, it seems, his Ontology (L-Ontology) consists of intuition of Ontological Tetrade also. Therefore we can try to modify L-Ontology to express this idea.

4. Primary Conclusions

1) We can find intuition of Ontological Tetrade in Soloviov’ Ontology

2) We may presuppose a non-explicite presence of Ontological Tetrade in Lesniewski’ Ontology

3) However both Ontologies are not universal since every is restricted by another

4) We can try to construct more universal version of Ontology, where the idea of Ontological Tetrade will play a main role

5) Finally, we may use rich logical means of L-Ontology to decide this task

PMO is an effort to construct a such more universal Ontology. Further I shall describe basic logical aspects of PMO using the term “Ontology” for PMO. 

5. Logical Foundations of Ontology

Let Mod(a,b,c,f) be a predicate with four arguments a, b, c, f. We can understand it as the assertion that “a is aspect of principle b under the condition c and a is made by the action f”. I shall translate this in the form “a is mode of modus b under the model c and projector f”. a,b,c are nominal variables or constants in this case, f is a functor of the type (N,N)/N, i.e., twoplaced functor from names to name. I accept here almost all the logical means of the language of S.Lesniewski’s “Ontology”
 with the exeption of his predicate “(”. Namely I accept Prothotetics without any changes, syntax of expressions of different categorial types, rules of inference with the exeption of Rule of Extensionality (see below). Prothotetical definitions will be used without any changes. Rules and forms of Ontological definitions will be discussed below. Instead of Lesniewski’s functor ( I shall use the predicate Mod.

In the first place, under the primary definitions, I shall understand the following type of prothotetical definitions (below “(”, “(”, “(” are signs of material implication, equivalence and conjunction respectively):

                       Dk1…km.     Modk1…km(xk1,…,xkm)  (  (хp1...(хpnMod(xk,xp),

where Modk1…km(xk1,…,xkm) is a definable expression of type S. Expression Modk1…km(xk1,…,xkm) contains only free variables xk1,…,xkm of the type (, where 1≤kj≤4, j=1,..,m, and type ( is either type N, when kj < 4, or type (N,N)/N, when kj = 4. I shall mean under the symbol (хp1...(хpnMod(xk,хp) an expression formed by adding of existential quantifiers (хp1...(хpn to predicate Mod, where variables хp1,...,хpn have type (, and ( is either type N, when ps < 4, or type (N,N)/N, when ps = 4, while 1≤ps≤4 and s=1,..,n. Predicate Mod contains only variables xk1,…,xkm and хp1,...,хpn such that variable xkj stands at the place number kj in predicate Mod, variable xps stands at the place number ps, and m+n = 4.  

There exist 
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 such primary definitions with m free variables xk1,…,xkm in predicate Mod. Since m ( 1, n ( 1, and m+n = 4, then m can have only three values 1, 2, 3. From here general number of primary definitions equals 
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 = 4 + 6 + 4 = 14. For example, the following special cases can be marked here (the special designations of expression Modk1…km(a1,…,am) are done after the colon):

D123. Mod123(a,b,c) :  Mod(a,b,c) ( (fMod(a,b,c,f),

where “Mod(a,b,c)” is read as “a is mode of modus b under model c”

D12. Mod12(a,b) :  Moda(a,b) ( (c(fMod(a,b,c,f), 

where “Moda(a,b)” is read as “a is mode of modus b”

D23. Mod23(b,c) :  Model(c,b) ( (a(f Mod(a,b,c,f), 

where “Model(c,b)” is read as “c is model for modus b”

D1. Mod1(a) :  Moda(a) ( (b(c(f Mod(a,b,c,f), 

where “Moda(a)” is read as “a is mode”

D2. Mod2(b) : Modus(b) ( (a(c(f Mod(a,b,c,f), 

where “Modus(b)” is read as “b is modus”

D3. Mod3(c) :  Model(c) ( (a(b(f Mod(a,b,c,f), 

where “Model(c)” is read as “c is model”

D4. Mod4(f) :  Projector(f) ( (a(b(cMod(a,b,c,f), 

where “Projector(f)” is read as “f is projector”

Secondly, under the primary definitions, I shall understand the following kinds of prothotetical definitions: 

 DI ik1,…,km.     a (ik1,…,km b  ( (xk1…(xkm((yp1...(ypnMod(...a...) ( (yp1...ypnMod(...b...)).

DE ik1,…,km.     a (ik1,…,km b  ( (xk1…(xkm((yp1...(ypnMod(...a...) ( (yp1...ypnMod(...b...)).

These expressions designate that variables xk1,…,xkm stand at the places number k1,…, km accordingly, variables yp1,..., ypn stand at the places number p1,..., pn accordingly in predicates Mod. Then m+n = 3, all i-s, kj-s and ps-s, where j=1,.., m, s=1,.., n, do not equal between each other. Terms а and b stand at place number i in the predicates Mod. Variables with index 4 (standing at the place number 4 in predicates Mod) are variables of type <N,N>/N. Another variables have type N.

We see from the definitions that  a (ik1,…,km b  ( (a (ik1,…,km b) ( (b (ik1,…,km a). 

I shall call the expression a (ik1,…,km b as «weak ik1,…,km-inclusion of а to b», expression a (ik1,…,km b  as  «weak ik1,…,km-equality of а and b». 

Appropriate «strong ik1,…,km-equality» (a =ik1,…,km b) can be defined for every «weak ik1,…,km-equality»:

        DSE ik1,…,km.      a =ik1,…,km b  (  a (ik1,…,km b ( (Mod(…a…) ( (Mod(…b…),

where under the designation (Mod(…a…) the predicate Mod is meant, in which all the variables, besides variable a, are bounded by existential quantifiers, and variable a stands at the place number i. Index i can accept values from 1 to 4 in the expressions with the index form ik1,…,km, and variable m can vary from 1 to 3 when i is fixed. Therefore, for every i we have 
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= 3+3+1 = 7 kinds of definitions, hence, 4(7 = 28 kinds in all. 

Relation with the index form ik1,…,km expresses equality or inclusion of i-objects by k1-, k2-,…,km-objects. Here i-object is the object, name for which is standing at the place number i in the predicate Mod. Namely 1-object is mode, 2-object is modus, 3-object is model, 4-object is projector. 

For example, moduses can be equal to each other on the following seven bases:

a (21 b ( (x1((y3(y4Mod(x1,a,y3,y4) ( (y3(y4Mod(x1,b,y3,y4)) – equality by modes

a (23 b ( (x3((y1(y4Mod(y1,a,x3,y4) ( (y1(y4Mod(y1,b,x3,y4)) – equality by models

a (24 b ( (x4((y1(y3Mod(y1,a,y3,x4) ( (y1(y3Mod(y1,b,y3,x4)) – equality by projectors

a (21,3 b ( (x1(x3((y4Mod(x1,a,x3,y4) ( (y4Mod(x1,b,x3,y4)) – equality by modes and models

a (21,4 b ( (x1(x4((y3Mod(x1,a,y3,x4) ( (y3Mod(x1,b,y3,x4)) – equality by modes and projectors

a (23,4 b ( (x3(x4((y1Mod(y1,a,x3,x4) ( (y1Mod(y1,b,x3,x4)) – equality by models and projectors

a (21,3,4 b ( (x1(x3(x4(Mod(x1,a,x3,x4) ( Mod(x1,b,x3,x4)) – equality by modes, models and projectors

For example, the following special equalities and inclusions can be distinguished:

DE21. a (21 b :         a ( b ( (c(Moda(c,a) ( Moda(c,b)),

      where “a ( b” is read as “a weakly equals b”

DI21. a (21 b :           a ( b ( (c(Moda(c,a) ( Moda(c,b)),

      where “a ( b” is read as “a is weakly included into b”

DI23. a (23 b :          a (* b ( (x(Model(x,a) ( Model(x,b)), 

where “a (* b” is read as “a weakly equals b by models”

I shall use the following equality also:

DE.  a = b ( Moda(a,b)(Moda(b,a), 

      where “a = b” is read as “a equals b”

Thirdly, under the primary definitions, I shall understand so called Valency Definitions, from which at least the following are done:

DPMODA1.  PModa(a) ( (b(Moda(b,a) ( (Moda(a,b)) ( Moda(a), 

where “PModa(a)” is read as “a is positive (not null) mode”

DNMODA.  NModa(a) ( (b(Moda(b) ( Moda(a,b)) ( Moda(a), 

where “NModa(a)” is read as “a is negative (null) mode”

DNMODUS. NModus(a) ( (b(Model(b) ( Model(b,a)) ( (c(Moda(c,a) ( NModa(c)) ( Modus(a), 

where “NModus(a)” is read as “a is negative (null) modus”

DPMODA2.  PModa(a,b) ( Moda(a,b) ( PModa(a), 

where “PModa(a,b)” is read as “a is positive (not null) mode for modus b”

DPMODUS.  PModus(a) ( (bPModa(b,a), 

where “PModus(a)” is read as “a is positive (not null) modus”

DIMODUS.  IModus(a) ( Modus(a) ( (b(Modus(b) ( Moda(b,a)),

where “IModus(a)” is read as “a is infinite modus”

DAT. At(a) ( PModus(a) ( (b(PModa(b,a) ( (b =2134 a)), here “At(a)” is read as “a is atom”

Definition of positive equivalence

DPE. a ( b  ( PModa(a,b) ( PModa(b,a), 

where “a ( b” is read as “a is positively equivalent to b”

To express properties of predicate Mod  I accept the following axioms (Axioms of Ontology)

(AO1) Moda(a,b) ( Modus(a) ( (d(Moda(b,d) ( Moda(a,d)) ( Moda(b,b) 

(AO2) Mod(a,b,c,f) ( (a =1234 f(b,c)) ( (aMod(a,b,c,f)

Taking into account primary Definitions, one can rewrite AO1 in the following form:

(AO1*) (cMod(a,b,c) ( (d((xMod(b,d,x) ( (yMod(a,d,y)) ( (zMod(b,b,z) ( (t(zMod(t,a,z),

or in the following form:

(AO1**) (c(fMod(a,b,c,f) ( (d((x(fMod(b,d,x,f) ( (y(fMod(a,d,y,f)) ( (z(fMod(b,b,z,f) ( (x(c(fMod(x,a,c,f),

On the basis of these axioms and definitions the following primary theorems can be proved.

First theorem of proper models. Moda(a,b) ( (c(Model(c,b) ( Mod(a,b,c)), i.e., if a is mode of modus b, then for some model c it is true that c is model for modus b and a is mode of modus b in the model c.

Proof.               (1) Moda(a,b)                                         premise

                   (2) Moda(a,b) ( (c(f Mod(a,b,c,f)        D12.

                   (3) (c(f Mod(a,b,c,f)                             MP (1), (2)

                   (4) (f Mod(a,b,c0,f)                                (c-omitting (3)

                   (5) (a(f Mod(a,b,c0,f)                            (a-adding (4)

                   (6) (a(f Mod(a,b,c0,f) ( Model(c0,b)     D23.

                   (7) Model(c0,b)                                       MP (5), (6)

                   (8) (f Mod(a,b,c0,f) ( Mod(a,b,c0)         D123.

                   (9) Mod(a,b,c0)                                       MP (4), (8)

                 (10) Model(c0,b) ( Mod(a,b,c0)               (-adding (7), (9)

                 (11) (c(Model(c,b) ( Mod(a,b,c))           (c-adding (8)

I used here the following rules of inference.

1. A ( B ( A ( B. In particular this rule is used when A ( B is a definition. Then I denote the name of the definition to the right of A ( B (see (2), (6) and (8)).

2. A(B, A ( B, modus ponens (MP). If B is deduced from (i)A(B and (j)B in the proof, then I shall write “MP (i), (j)” or “MP (j), (i)” to the right of B (see (3), (7) and (9)). 

3. (aA(a) ( A(ai), the rule for omitting the existential quantifier ((a-omitting). As usual, the variable ai which we substitute in formula A(a) for the variable a cannot be equiform to any variable appearing in earlier expressions of a proof. I shall call variable ai a variable bearing an index. If A(ai) is deduced from (i)(aA(a), then I shall write “(a-omitting (i)” to the right of A(ai) (see (4)).

4. {A(a)}a[b] ( (aA(a), the rule of adding the existential quantifier ((a-adding), where {A(a)}a[b] is the result of right substitution of the term b for the term a in the formula A(a). No conditions are limiting the application of this rule. If (aA(a) is deduced from (i) {A(a)}a[b], then I shall write “(a-adding (i)” to the right of (aA(a) (see (5) and (11)).

5. A, B ( A(B, the rule “(-adding”. If A(B is deduced from (i)A and (j)B in the proof, then I shall write “(-adding (i), (j)” to the right of A(B (see (10)).

Proof of First theorem of proper models is done as suppositional proof. If a conditional is being proved, the first expression of the proof is its antecedent. If this antecedent is a conjunction, then its factors are the initial expressions of the proof. I shall denote these expressions as premises of the proof. As usual, the rule for adding the general quantifier, A(a) ( (aA(a), is limited by the condition that the variable a should not appear in the premises of the proof (also, the applicability of the rule for adding the general quantifier is restricted by a second condition, namely that the variable a must not appear in any earlier expression of a proof containing, apart from a, a variable bearing of index). Let us also note that in suppositional proofs we are not permitted to derive new formulae from formulae occuring earlier in the proof by applying substitution for free variables of the premisses. 

I shall use another rules of inference and theorems of Functional Calculus (including Rule of Substitution with the restrictions proposed above). In every case (at least in the beginning) I shall try to remark these theorems and rules of inference especially.

Second theorem of proper models. Model(a,b) ( (c(Moda(c,b) ( Mod(c,b,a)), i.e., if a is model for modus b, then for some mode c it is true that c is mode of modus b and c is mode of modus b in the model a. 

Proof.            (1) Model(a,b)                                               premise

                      (2) Model(a,b) ( (c(fMod(c,b,a,f)               D23.

                      (3) (c(fMod(c,b,a,f)                                     MP (1), (2)

                      (4) (f Mod(c0,b,a,f)                                       (c-omitting (3)

                      (5) (a(f Mod(c0,b,a)                                     (a-adding (4)

                      (6) (a(f Mod(c0,b,a) ( Moda(c0,b)              D12.

                      (7) Moda(c0,b)                                              MP (5), (6)

                      (8) (f Mod(c0,b,a,f) ( Mod(c0,b,a)               D123.

                      (9) Mod(c0,b,a)                                             MP (4), (8)

                    (10) Moda(c0,b) ( Mod(c0,b,a)                      (-adding (7), (9)

                    (11) (c(Moda(c,b) ( Mod(c,b,a))                  (c-adding (8)

Third theorem of proper models. Model(a) ( (bModel(a,b), i.e., if a is model, then for some modus b it is true that a is model for b.

This theorem is directly following from D23 and D3.

Theorem of model presence. Modus(a) ( (bModel(b,a), i.e., if a is modus, then for some b is true that b is model for a.

Proof.    (1) Modus(a)                                        premise

              (2) Modus(a) ( (c(bMod(c,a,b)         D2., D123.

              (3) (c(bMod(c,a,b)                             MP (1), (2)

              (4) (cMod(c,a,b0)                                (b-omitting (3)

              (5) (cMod(c,a,b0) ( Model(b0,a)        D23., D123.

              (6) Model(b0,a)                                    MP (4), (5)

              (7) (bModel(b,a)                                 (b-adding (6)

Predicate Model(a,b) appears in Theorems of proper models and in Theorem of model presence. If  Model(a,b) is true, then a is model for modus b, i.e., a is proper model for modus b. In general, if  Model(a) and Modus(b) are true, then Model(a,b) is not always true. Therefore there is not a rule such that all models are proper models for a modus b. However if a is proper model for modus b, then Theorems of proper models and Theorem of model presence take place.

Lemma 1 (first lemma of Co-ordination). Mod(a,b,c,f) ( Moda(a) ( Modus(b) ( Model(c) ( Projector(f)

Proof.           (1) Mod(a,b,c,f)                                               premise

                     (2) (b(c(fMod(a,b,c)                                    (b(c(f-adding (1)

                     (3) (b(c(fMod(a,b,c) ( Moda(a)                  D1.

                     (4) Moda(a)                                                    MP (2), (3)

                     (5) (a(c(f Mod(a,b,c,f)                                  (a(c(f -adding (1)

                     (6) (a(c(f Mod(a,b,c,f) ( Modus(b)              D2.

                     (7) Modus(b)                                                  MP (5), (6)

                     (8) (a(b(f Mod(a,b,c,f)                                 (a(b-adding (1)

                     (9) (a(b(f Mod(a,b,c,f) ( Model(c)              D3.

                    (10) Model(c)                                                  MP (8), (9)

                    (11) (a(b(c Mod(a,b,c,f)                                (a(b(c-adding (1)

                    (12) (a(b(c Mod(a,b,c,f) ( Projector(f)        D4.

                    (13) Projector(f)                                              MP (11), (12)

                    (11) Moda(a) ( Modus(b) ( Model(c)

                           ( Projector(f)                                           (-adding (4), (7), (10), (13)

By the same way we can prove the following lemmas.

Lemma 2 (second lemma of Co-ordination). Mod(a,b,c) ( Moda(a,b)( Mod13(a,c)(Model(c,b)

Lemma 3 (third lemma of Co-ordination). Moda(a,b) ( Moda(a) ( Modus(b)

Lemma 4 (forthlemma of Co-ordination). Moda(a,b) ( Moda(a) ( Model(b)

Lemma 5 (fifth lemma of Co-ordination). Model(a,b) ( Model(a) ( Modus(b)

Let formula A be a subformula of formula C and A(B. Let formula CA[B] be the result of substitution of formula B for A in the formula C. Further I shall permit myself to use formula CA[B] instead of C (for example see (2), (5) in the proof of Theorem of identical mode below). In particular, if definitions (D)A(BE[E] and (D*)C(E are done, then I shall write A(BE[C] or A(BE[C] (BE[C](A or BE[C](A) with the reference to D and D* (see (2) below) to the right of line where A(BE[C] or A(BE[C] (BE[C](A or BE[C](A) are done.

Theorem of identical mode. Modus(a) ( Moda(a,a), i.e., if a is modus, then a is mode of modus a.

Proof.     (1) Modus(a)                                                                      premise

               (2) Modus(a) ( (b(cMod(b,a,c)                                       D2., D123.

               (3) (b(cMod(b,a,c)                                                           MP (1), (2)

               (4) (cMod(b0,a,c)                                                          (b-omitting (3)

               (5) (cMod(b0,a,c) ( 

(d((xMod(a,d,x) ( (yMod(b0,d,y))((zMod(a,a,z) ( Modus(b0)         AO1*

               (6) (d((xMod(a,d,x) ( (yMod(b0,d,y))((zMod(a,a,z) ( Modus(b0)  MP (4), (5)

               (7) (zMod(a,a,z)                                                               (-omitting (6)

               (8) (zMod(a,a,z) ( Moda(a,a)                                        D123, D12.

               (9) Moda(a,a)                                                                  MP (7), (8)

I used here the rule “(-omitting” (see (7)) A(B(A.

Theorem of modality of modus. Modus(a) ( Moda(a), i.e., if a is modus, then a is mode.

Proof.       (1) Modus(a)                                       premise

                 (2) Modus(a) ( Moda(a,a)                Theorem of identical mode

                 (3) Moda(a,a)                                    MP (1), (2)

                 (4) Moda(a,a) ( Moda(a)                  Lemma 3

                 (5) Moda(a)                                       MP (3), (4)

Theorem of modusness of mode. Moda(a) ( Modus(a), i.e., if a is mode, then a is modus.

Proof.       (1)  Moda(a)                                                                         premise

                (2)  Moda(a) ( (bModa(a,b)                                               D1, D12

                (3)  (bModa(a,b)                                                                  MP (1), (2)

                (4)  Moda(a,b0)                                                                  (b-omitting (3)

                (5)  Moda(a,b0) ( Modus(a)                                                   AO1

                (6)  Modus(a)                                                                     MP (4), (5)

Theorem of mode and modus equivalence. Moda(a) ( Modus(a), i.e., a is mode iff a is modus.

Proof. See Theorem of modality of modus and Theorem of modusness of mode.

Taking into account this theorem, one can represent Theorem of identical mode in the following form.

Theorem of identical mode*. Moda(a) ( Moda(a,a), i.e., if a is mode, then a is mode of modus a.

Theorem of modus and identical mode equivalence. Modus(a) ( Moda(a,a), i.e., a is modus iff a is mode of itself.

Proof.     1. For proof of   Modus(a) ( Moda(a,a)   see Theorem of identical mode.

               2. For proof of   Moda(a,a) ( Modus(a)   see Lemma 3.

Theorem of transitivity. Moda(a,b)(Moda(b,c) ( Moda(a,c), i.e., if a is mode of modus b and b is mode of modus c, then a is mode of modus c.

Proof.       (1) Moda(a,b)                                                                   1st premise

                 (2) Moda(b,c)                                                                   2nd premise

                 (3) Moda(a,b) ( (xMod(a,b,x)                                        D123., D12.

                 (4) Moda(b,c) ( (yMod(b,c,y)                                        D123., D12.

                 (5) (xMod(a,b,x)                                                               MP (1), (3)

                 (6) (yMod(b,c,y)                                                               MP (2), (4)

                 (7) (xMod(a,b,x) ( 

                           (d((xMod(b,d,x) ( (yMod(a,d,y))( (zMod(b,b,z) ( Modus(a)   AO1*

                 (8) (d((xMod(b,d,x) ( (yMod(a,d,y))( (zMod(b,b,z) ( Modus(a)     MP (5), (7)

                 (9) (d((xMod(b,d,x) ( (yMod(a,d,y))                              (-omitting (8)

                 (10) (xMod(b,d,x) ( (yMod(a,d,y)                                   (d-omitting (9)

                 (11) (xMod(b,c,x) ( (yMod(a,c,y)                                  substitution c for d in (10)

                 (12) (yMod(b,c,y) ( (xMod(a,c,x)              renaming of bounded variables in (11)

                 (13) (xMod(a,c,x)                                                                MP (6), (12)

                 (14) (xMod(a,c,x) ( Moda(a,c)                                         D123., D12.

                 (15) Moda(a,c)                                                                    MP (13), (14)

The new rules of inference were presented here. These are Rule of (a-omitting (see (10)) (aA(A, Rule of Substitution (see (11)) and Rule of  Renaming of bounded variables (see (12)).

Theorem of modus equivalence. 

(i) Modus(a) ( a = a

(ii) a = b ( b = a

(iii) a = b ( b = c ( a = c

Proof.   (i)     (1) Modus(a)                                               premise

                      (2) Modus(a) ( Moda(a,a)                       Theorem of identical mode

                      (3) Moda(a,a)                                           MP (1), (2)

                      (4) Moda(a,a) ( Moda(a,a)                     (-adding (3), (3)

                      (5) Moda(a,a) ( Moda(a,a) ( a = a        DE

                      (6) a = a                                                     MP (4), (5)

            (ii)     (1) a = b                                                      premise

                      (2) a = b ( Moda(a,b) ( Moda(b,a)        DE

                      (3) Moda(a,b) ( Moda(b,a)                     MP (1), (2)

                      (4) Moda(b,a) ( Moda(a,b)                     commutativity (3)

                      (5) Moda(b,a) ( Moda(a,b) ( b = a        DE
                      (6) b = a                                                      MP (4), (5)

           (iii)      (1) a = b                                                      1st premise

                       (2) b = c                                                      2nd premise

                       (3) a = b ( Moda(a,b) ( Moda(b,a)        DE

                       (4) Moda(a,b) ( Moda(b,a)                     MP (1), (3)

                       (5) b = c ( Moda(b,c) ( Moda(c,b)         DE

                       (6) Moda(b,c) ( Moda(c,b)                      MP (2), (5)

                       (7) Moda(a,b)                                             (-omitting (4)

                       (8) Moda(b,c)                                             (-omitting (6)

                       (9) Moda(a,b)(Moda(b,c)                         (-adding (7), (8)

                      (10) Moda(a,b)(Moda(b,c)( Moda(a,c)   Theorem of transitivity

                      (11) Moda(a,c)                                             MP (9), (10)

                      (12) Moda(c,b)                                             (-omitting (6)

                      (13) Moda(b,a)                                             (-omitting (4)

                      (14) Moda(c,b)( Moda(b,a)                        (-adding (12), (13)

                      (15) Moda(c,b)( Moda(b,a)( Moda(c,a)   Theorem of transitivity

                      (16) Moda(c,a)                                               MP (14), (15)

                      (17) Moda(a,c)( Moda(c,a)                         (-adding (11), (16)

                      (18) Moda(a,c)( Moda(c,a)( a = c              DE

                      (19) a = c                                                         MP (17), (18)

Rule A(B(B(A is used here (see (4)).

In particurlar, we can represent Theorem of modus equivalence in the following form.

Theorem of modus equivalence*. 

(i) Modus(a) ( a = a

(ii) Modus(a)( Modus(b)  ( (a = b ( b = a)

(iii) Modus(a) (Modus(b)( Modus(c)  ( (a = b ( b = c ( a = c)

Therefore, the relation “=” is a relation of equivalence on moduses, i.e., “=” is “modus equivalence”.

Taking into account Theorem of mode and modus equivalence we also can represent Theorem of modus equivalence in the following form.

Theorem of modus equivalence**. 

(i) Moda(a) ( a = a

(ii) Moda(a)( Moda(b)  ( (a = b ( b = a)

(iii) Moda(a) (Moda(b)( Moda(c)  ( (a = b ( b = c ( a = c)

Therefore, the relation “=” is also a relation of equivalence on modes.

Theorem of modus order. 

(i) Modus(a) ( Moda(a,a)

(ii) Moda(a,b) ( Moda(b,a) ( a = b

(iii) Moda(a,b) ( Moda(b,c) ( Moda(a,c)

Proof.   (i) see Theorem of identical mode

             (ii) see DE

             (iii) see Theorem of transitivity

In particurlar, we can represent Theorem of modus order in the following form.

Theorem of modus order*. 

(i) Modus(a) ( Moda(a,a)

(ii) Modus(a)( Modus(b)  ( (Moda(a,b) ( Moda(b,a) ( a = b)

(iii) Modus(a) (Modus(b)( Modus(c)  ( (Moda(a,b) ( Moda(b,c) ( Moda(a,c))

Therefore, the predicate Moda(a,b) is the predicate of non strong order (“modus order”) on moduses (or modes, taking into account Theorem of mode and modus equivalence). 

Theorem of model unity. Modus(a) ( (b(Model(b,a) ( Mod(a,a,b)), i.e., if a is modus, then for some b it is true that b is model for a and a is mode of itself in the model b.

Proof.      (1)  Modus(a)                                      premise

                (2)  Modus(a) ( (b(cMod(b,a,c)       D2., D123.

                (3)  (b(cMod(c,a,b)                           MP (1), (2)

                (4)  (bMod(c0,a,b)                              (c-omitting (3)

                (5)  (bMod(c0,a,b) ( (bMod(a,a,b)    consequence of AO1*

                (6)  (bMod(a,a,b)                                MP (4), (5)

                (7)  Mod(a,a,b0)                                   (b-omitting (6)

                (8)  (cMod(c,a,b0)                               (b-omitting (3)

                (9)  (cMod(c,a,b0) ( Model(b0,a)       D23., D123.

               (10) Model(b0,a)                                   MP (8), (9)

               (11) Model(b0,a) ( Mod(a,a,b0)            (-adding (7), (10)

               (12) (b(Model(b,a) ( Mod(a,a,b))        (b-adding (11)

 I used here the rule A(B(C ( A(B (see (5)).

I shall say that model b for modus a such that a is mode of itself in b is called “model unity for modus a” underlining by this term that b is neutral element in the operation “modus a under the condition b”. Model unity is a such condition under which modus remains invariable (as if x in product x(1 remains invariable: x (1 = x). 

Theorem of antitransitivity. Moda(b,a) ( (Moda(b,c) ( (Moda(a,c), i.e., if b is mode of a and b is not mode of c, then a is not mode of c.

Proof.     (1)  Moda(b,a)                                                        1st premise

               (2)  (Moda(b,c)                                                       2nd premise

               (3)  Moda(b,a) ( Moda(a,c) ( Moda(b,c)           Theorem of transitivity

               (4)  ( Moda(b,c) ( ((Moda(b,a) ( (Moda(a,c))   Contraposition of (3)

               (5)  (Moda(b,a) ( (Moda(a,c)                               MP (2), (4)

               (6)  (Moda(a,c)                                                       (1) and (5)

Rules of Contraposition A(B((B((A and Morgan Laws (see (4)) are used here.

Theorem of reflectivity of positive equivalence. PModa(a) (  a ( a, i.e., if a is positive mode, then a is positively equivalent to itself.

Proof.       (1) PModa(a)                                                             premise

                 (2) PModa(a) ( (b(Moda(b,a) ( (Moda(a,b))       DPMODA1

                 (3) (b(Moda(b,a) ( (Moda(a,b))                           MP (1), (2)

                 (4) Moda(b0,a) ( (Moda(a,b0)                               (b-omitting (3)

                 (5) Moda(b0,a) ( Modus(a)                                     Lemma 3

                 (6) Modus(a)                                                             MP (4), (5)

                 (7) Modus(a) ( Moda(a,a)                                       Theorem of identical mode

                 (8) Moda(a,a)                                                          MP (6), (7)

                 (9) Moda(a,a) ( PModa(a)                                      (-adding (1), (8)

               (10) Moda(a,a) ( PModa(a) ( PModa(a,a)             DPMODA2

               (11) PModa(a,a)                                                         MP (9), (10)

               (12) PModa(a,a) ( PModa(a,a)                                 (-adding (11), (11)

               (13) PModa(a,a) ( PModa(a,a) ( a ( a                    DPE.

               (14) a ( a                                                                     MP (12), (13)

Theorem of simmetry of positive equivalence.  a ( b ( b ( a, i.e., if a is positively equivalent to b, then b is positively equivalent to a.

Proof.       (1)  a ( b                                                             premise

                 (2) a ( b ( PModa(a,b) ( PModa(b,a)            DPE.

                 (3) PModa(a,b) ( PModa(b,a)                         MP (1), (2)

                 (4) PModa(b,a) ( PModa(a,b)                         commutativity of conjunction (3)

                 (5) PModa(b,a) ( PModa(a,b) ( b ( a            DPE.

                 (6) b ( a                                                              MP (4), (5)

Theorem of transitivity of positive equivalence. a ( b ( b ( c  (  a ( c, i.e., if a is positively equivalent to b and b is positively equivalent to c, then a is positively equivalent to c.

Proof.     (1)  a ( b                                                         1st premise

               (2)  b ( c                                                         2nd premise

               (3)  a ( b ( PModa(a,b) ( PModa(b,a)       DPE.

               (4)  PModa(a,b) ( PModa(b,a)                    MP (1), (3)

               (5)  b ( c ( PModa(b,c) ( PModa(c,b)       DPE.

               (6)  PModa(b,c) ( PModa(c,b)                    MP (2), (5)

               (7)  PModa(a,b)                                              (-omitting (4)

               (8)  PModa(a,b) ( Moda(a,b) ( PModa(a)   DPMODA2

               (9)  Moda(a,b) ( PModa(a)                            MP (7), (8)

             (10)  Moda(a,b)                                                 (-omitting (9)

             (11)  PModa(b,c)                                              (-omitting (6)

             (12)  PModa(b,c) ( Moda(b,c) ( PModa(b)   DPMODA2

             (13)  Moda(b,c) ( PModa(b)                             MP (11), (12)

             (14)  Moda(b,c)                                                  (-omitting (13)

             (15)  Moda(a,b) ( Moda(b,c)                           (-adding (10), (14)

             (16)  Moda(a,b) ( Moda(b,c) ( Moda(a,c)     Theorem of transitivity

             (17)  Moda(a,c)                                                   MP (15), (16)

             (18)  PModa(a)                                                     (-omitting (9)

             (19)  Moda(a,c) ( PModa(a)                               (-adding (17), (18)

             (20)  Moda(a,c) ( PModa(a) ( PModa(a,c)      DPMODA2

             (21)  PModa(a,c)                                                  MP (19), (20)

             (22)  PModa(c,b)                                                 (-omitting (6)

             (23)  PModa(c,b) ( Moda(c,b) ( PModa(c)     DPMODA2

             (24)  Moda(c,b) ( PModa(c)                              MP (22), (23)

             (25)  Moda(c,b)                                                   (-omitting (24)

             (26)  PModa(b,a)                                                 (-omitting (4)

             (27)  PModa(b,a) ( Moda(b,a) ( PModa(b)     DPMODA2

             (28)  Moda(b,a) ( PModa(b)                              MP (26), (27)

             (29)  Moda(b,a)                                                  (-omitting (28)

             (30)  Moda(c,b) ( Moda(b,a)                           (-adding (25), (29)

             (31)  Moda(c,b) ( Moda(b,a) ( Moda(c,a)     Theorem of transitivity

             (32)  Moda(c,a)                                                   MP (30), (31)

             (33)  PModa(c)                                                     (-omitting (24)

             (34)  Moda(c,a) ( PModa(c)                               (-adding (32), (33)

             (35)  Moda(c,a) ( PModa(c) ( PModa(c,a)      DPMODA2

             (36)  PModa(c,a)                                                  MP (34), (35)

             (37)  PModa(a,c) ( PModa(c,a)                         (-adding (21), (36)

             (38)  PModa(a,c) ( PModa(c,a) ( a ( c            DPE.

             (39)  a ( c                                                          MP (37), (38)

Theorem of positive equivalence. Relation “(” is relation of positive equivalence in the following sense.

                      (i)  PModa(a) (  a ( a

                     (ii) a ( b ( b ( a

                    (iii) a ( b ( b ( c  (  a ( c

Proof. See theorems 12, 13 and 14.

We can represent Theorem of positive equivalence in the following form.

Theorem of positive equivalence*.

                      (i)  PModa(a) (  a ( a

                     (ii) PModa(a) ( PModa(b)  (  (a ( b ( b ( a)

                    (iii) PModa(a) ( PModa(b) ( PModa(c)  (  (a ( b ( b ( c  (  a ( c)

Therefore, relation “(” is equivalence on positive modes.

Theorem of positive modus and identical mode equivalence. PModus(a) ( PModa(a,a), i.e.,  a is positive modus iff a is positive mode for itself.

Proof.   1. PModus(a) ( PModa(a,a), i.e., if a is positive modus, then a is positive mode for itself.

               (1)  PModus(a)                                                           premise

               (2)  PModus(a) ( (bPModa(b,a)                             DPMODUS

               (3)  (bPModa(b,a)                                                    MP (1), (2)

               (4)  PModa(b0,a)                                                       (b-omitting (3)

               (5)  PModa(b0,a) ( Moda(b0,a) ( PModa(b0)         DPMODA2

               (6)  Moda(b0,a) ( PModa(b0)                                    MP (4), (5)

               (7)  PModa(b0)                                                            (-omitting (6)

               (8)  PModa(b0) ( (c(Moda(c,b0) ( (Moda(b0,c))   DPMODA1

               (9)  (c(Moda(c,b0) ( (Moda(b0,c))                          MP (7), (8)

             (10)  Moda(c0,b0) ( (Moda(b0,c0)                              (c-omitting (9) 

             (11)  Moda(c0,b0)                                                         (-omitting (10)

             (12)  Moda(b0,a)                                                           (-omitting (6)

             (13)  Moda(c0,b0) ( Moda(b0,a)                                 (-adding (11), (12)

             (14)  Moda(c0,b0) ( Moda(b0,a) ( Moda(c0,a)         Theorem of transitivity

             (15)  Moda(c0,a)                                                           MP (13), (14)

             (16)  Moda(b0,a) ( (Moda(b0,c0) ( (Moda(a,c0)      Theorem of antitransitivity

             (17)  (Moda(b0,c0)                                                        (-omitting (9)

             (18)  Moda(b0,a) ( (Moda(b0,c0)                                (-adding (12), (17)

             (19)  (Moda(a,c0)                                                         MP (16), (18)

             (20)  Moda(c0,a) ( (Moda(a,c0)                                 (-adding (15), (19)

             (21)  (c(Moda(c,a) ( (Moda(a,c))                             (c-adding (20)

             (22)  Moda(c0,a) ( Modus(a)                                      Lemma 3

             (23)  Modus(a)                                                              MP (15), (22)

             (24)  Modus(a) ( Moda(a,a)                                       Theorem of identical mode

             (25)  Moda(a,a)                                                            MP (23), (24)

             (26)  (c(Moda(c,a) ( (Moda(a,c)) ( PModa(a)         DPMODA1

             (27)  PModa(a)                                                              MP (21), (26)

             (28)  Moda(a,a) ( PModa(a)                                        (-adding (25), (27)

             (29)  (Moda(a,a) ( PModa(a)) ( PModa(a,a)            DPMODA2

             (30)  PModa(a,a)                                                          MP (28), (29)

               2. PModa(a,a) ( PModus(a), i.e., if a is positive mode for itself, then a is positive modus.

               (1)  PModa(a,a)                               premise

               (2)  {PModa(b,a)}b[a]                     representation of (1) as result of substitution of

                                                                         variable a for b in formula PModa(b,a)

               (3)  (bPModa(b,a)                           (b-adding (2)

               (4)  (bPModa(b,a) ( PModus(a)    DPMODUS

               (5)  PModus(a)                                  MP (3), (4)

Theorem of positive mode and modus equivalence. PModus(a) ( PModa(a), i.e., a is positive modus iff a is positive mode.

Proof.  1. PModus(a) ( PModa(a), i.e., if a is positive modus, then a is positive mode.

                 (1)  PModus(a)                                                premise

                 (2)  PModus(a) ( PModa(a,a)           Theorem of of positive modus 

                                                                            and identical mode equivalence

                 (3)  PModa(a,a)                                              MP (1), (2)

                 (4)  PModa(a,a) ( Moda(a,a) ( PModa(a)   DPMODA2

                 (5)  Moda(a,a) ( PModa(a)                            MP (3), (4)

                 (6)  PModa(a)                                                  (-omitting (5)

           2. PModa(a) ( PModus(a), i.e., if a is positive mode, then a is positive modus.

                 (1)  PModa(a)                                                             premise

(2) PModa(a) ( (b(Moda(b,a) ( (Moda(a,b))       DPMODA1

(3) (b(Moda(b,a) ( (Moda(a,b))                            MP (1), (2)

(4) Moda(b0,a) ( (Moda(a,b0)                                (b-omitting (3)

(5) Moda(b0,a)                                                          (-omitting (4)

(6) Moda(b0,a) ( Modus(a)                                     Lemma 3

(7) Modus(a)                                                             MP (5), (6)

                 (8)  Modus(a) ( (c(dMod(c,a,d)                              D23.

                 (9)  (c(dMod(c,a,d)                                                  MP (7), (8)

               (10)  (dMod(c0,a,d)                                                     (c-omitting (9)

               (11)  (dMod(c0,a,d) ( Moda(c0,a)                             D123., D12.

               (12)  Moda(c0,a)                                                          MP (10), (11)

               (13)  PModa(a) ( Moda(c0,a)                                     (-adding (1), (12)

               (14)  (PModa(a) ( Moda(c0,a)) ( PModa(c0,a)        DPMODA2

               (15)  PModa(c0,a)                                                       MP (13), (14)

               (16)  (cPModa(c,a)                                                     (c-adding (15)

               (17)  (cPModa(c,a) ( PModus(a)                               DPMODUS

               (18)  PModus(a)                                                            MP (16), (17)

Theorem of consequence of positive mode. PModa(a,b) ( PModa(a,a), i.e., if a is positive mode of b, then a is positive mode of itself.

Proof.   (1) PModa(a,b)                                                           premise

             (2) PModa(a,b) ( Moda(a,b) ( PModa(a)                DPMODA2

             (3) Moda(a,b) ( PModa(a)                                         MP (1), (2)

             (4) PModa(a)                                                                (-omitting (3) 

             (5) PModa(a) ( PModus(a)  Theorem of positive mode and modus equivalence

             (6) PModus(a)                                                              MP (4), (5)

             (7) PModus(a) ( PModa(a,a)                          Theorem of positive modus 

                                                                                     and identical mode equivalence

             (8) PModa(a,a)                                                            MP (6), (7)

First theorem of null mode. Model(a) ( NModus(b)  (  (cMod(c,b,a), i.e., if a is model and b is null modus, then for some c it is true that c is mode of b in a.

Proof.             (1)  Model(a)                                                                           1st premise

                       (2)  NModus(b)                                                                        2nd premise

                       (3)  NModus(b) ( 

(a(Model(a) ( Model(a,b)) ( (c(Moda(c,b) ( NModa(c)) ( Modus(b)   DNMODUS

(4) (a(Model(a) ( Model(a,b)) ( 

(c(Moda(c,b) ( NModa(c)) ( Modus(b)                              MP (2), (3)

(5)  (a(Model(a) ( Model(a,b))                                              (-omitting (4)

(6)  Model(a) ( Model(a,b)                                                     (a-omitting (5)

(7)  Model(a,b)                                                                         MP (1), (7)

(8)  Model(a,b) ( (cMod(c,b,a)                                               D23., D123.

(9)  (cMod(c,b,a)                                                                      MP (7), (8)

Second theorem of null mode. NModus(a) ( Moda(c,a)  (  NModa(c), i.e., if a is null modus and c is mode of a, then c is null mode.

Proof.             (1)  NModus(a)                                                                       1st premise

                       (2)  Moda(c,a)                                                                        2nd premise

                       (3)  NModus(a) ( 

(b(Model(b) ( Model(b,a)) ( (c(Moda(c,a) ( NModa(c)) ( Modus(a)   DNMODUS

(4) (b(Model(b) ( Model(b,a)) ( 

(c(Moda(c,a) ( NModa(c)) ( Modus(a)                              MP (1), (3)

(5)  (c(Moda(c,a) ( NModa(c))                                            (-omitting (4)

(6)  Moda(c,a) ( NModa(c)                                                   (c-omitting (5)

(7)  NModa(c)                                                                          MP (2), (6)

Theorem of modality of null modus. NModus(a) ( NModa(a), i.e., if a is null modus, then a is null mode.

Proof.              (1)  NModus(a)                                                                      premise

                        (2)  NModus(a) ( 

(b(Model(b) ( Model(b,a)) ( (c(Moda(c,a) ( NModa(c)) ( Modus(a)   DNMODUS

(3) (b(Model(b) ( Model(b,a)) ( 

(c(Moda(c,a) ( NModa(c)) ( Modus(a)                             MP (1), (2)

(4)  Modus(a)                                                                          (-omitting (3)

(5)  Modus(a) ( Moda(a,a)                                     Theorem of identical mode

(6)  Moda(a,a)                                                                        MP (4), (5)

(7)  NModus(a) ( Moda(a,a)                                                 (-adding (1), (6)

(8)  NModus(a) ( Moda(a,a)  (  NModa(a)       Second theorem of null mode

(9)  NModa(a)                                                                         MP (7), (8)

Second theorem of null mode*. NModa(a) ( Moda(c,a)  (  NModa(c), i.e., if a is null mode and c is mode of a, then c is null mode.

Proof.              (1) NModa(a)                                                                    1st premise

                        (2) Moda(c,a)                                                                   2nd premise

                        (3) Moda(b)                                                                       3rd premise

                        (4) NModa(a) ( (b(Moda(b) ( Moda(a,b)) ( Moda(a)  DNMODA

                        (5) (b(Moda(b) ( Moda(a,b)) ( Moda(a)                        MP (1), (4)

                        (6) (b(Moda(b) ( Moda(a,b))                                           (-omitting (5)

                        (7) Moda(b) ( Moda(a,b)                                                   (b-omitting (6)                                     

                        (8) Moda(a,b)                                                                      MP (3), (7)

                        (9) Moda(c,a) ( Moda(a,b)                                               (-adding (2), (8)

                      (10) Moda(c,a) ( Moda(a,b) ( Moda(c,b)                 Theorem of transitivity                      

                      (11) Moda(c,b)                                                                     MP (9), (10)

                      (12) Moda(c,a) ( Moda(c)                                                   Lemma 3

                      (13) Moda(c)                                                                          MP (2), (12)

Therefore we have that NModa(a) ( Moda(c,a)  ( (Moda(b) ( Moda(c,b)), i.e., NModa(a) ( Moda(c,a)  ( (b(Moda(b) ( Moda(c,b)), and NModa(a) ( Moda(c,a)  ( Moda(c). From here we have that NModa(a) ( Moda(c,a)  ( (b(Moda(b) ( Moda(c,b))( Moda(c), i.e., since (b(Moda(b) ( Moda(c,b))( Moda(c) entails NModa(c) accordingly DNMODA, we finally have that NModa(a) ( Moda(c,a)  (  NModa(c).                   

Theorem of minimality of null modus. Modus(a) ( NModus(b) ( Moda(b,a), i.e., if a is modus and b is null modus, then b is mode of a.

Proof.              (1) Modus(a)                                                                         1st premise

                        (2) NModus(b)                                                                      2nd premise

                        (3) NModus(b) ( NModa(b)                     Theorem of modality of null modus                                         

                        (4) NModa(b)                                                                        MP (2), (3)

                        (5) NModa(b) ( (a(Moda(a) ( Moda(b,a))                          DNMODA

                        (6) (a(Moda(a) ( Moda(b,a))                                                MP (4), (5)

                        (7) Moda(a) ( Moda(b,a)                                                       (a-omitting (6)

                        (8) Modus(a) ( Moda(a)                                 Theorem of modality of modus

                        (9) Moda(a)                                                                             MP (1), (8)

                      (10) Moda(b,a)                                                                         MP (7), (9)

Theorem of null mode generality. Moda(a) ( NModa(b) ( Moda(b,a)

Proof.     (1) Moda(a)                                                                          1st premise

               (2) NModa(b)                                                                       2nd premise

               (3) NModa(b) ( Moda(b) ( (a(Moda(a) ( Moda(b,a))    DNMODA

               (4) Moda(b) ( (a(Moda(a) ( Moda(b,a))                          MP (2), (3)

               (5) (a(Moda(a) ( Moda(b,a))                                             (-omitting (4)

               (6) Moda(a) ( Moda(b,a)                                                    (a-omitting (5)

               (7) Moda(b,a)                                                                      MP (1), (6)

Taking into account Theorem of modus and mode equivalence, we can rewrite the theorem in the following form.

Theorem of null mode generality*. Modus(a) ( NModa(b) ( Moda(b,a)

Theorem of modal incompatibility. PModa(a) ( (NModa(a) ( Moda(a)

Proof. 1. PModa(a) ( (NModa(a) ( Moda(a)

                 (1) PModa(a)                                                                 premise

                 (2) PModa(a) ( (b(Moda(b,a) ( (Moda(a,b))           DPMODA1

                 (3) (b(Moda(b,a) ( (Moda(a,b))                               MP (1), (2)

                 (4) Moda(b0,a) ( (Moda(a,b0)                                  (b-omitting (3)

                 (5) Moda(b0,a)                                                            (-omitting (4)

                 (6) Moda(b0,a) ( Modus(a)                                        Lemma 3

                 (7) Modus(a)                                                                MP (5), (6)

                 (8) Modus(a) ( Moda(a)                                  Theorem of modality of modus

                 (9) Moda(a)                                                                 MP (7), (8)

               (10) Moda(b0,a) ( Moda(b0)                                       Lemma 3

               (11) Moda(b0)                                                               MP (5), (10)

               (12) (Moda(a,b0)                                                         (-omitting (4)

               (13) Moda(b0) ( (Moda(a,b0)                                     (-adding (11), (12)

               (14) (b(Moda(b) ( (Moda(a,b))                                 (b-adding (13)

               (15) (b(Moda(b) ( (Moda(a,b)) 

                             ( (((b(Moda(b) ( Moda(a,b))           Theorem of functional calculus

              (16) (((b(Moda(b) ( Moda(a,b))                                MP (14), (15)

              (17) (((b(Moda(b) ( Moda(a,b)) ( (Moda(a)            (-adding (16)

              (18) (((b(Moda(b) ( Moda(a,b)) ( (Moda(a) 

                                                   ( (NModa(a)                            DNMODA

              (19) (NModa(a)                                                             MP (17), (18)

              (20) Moda(a) ( (NModa(a)                                           (-adding (9), (19)

I used here the rule “(-adding” A ( A(B (see (17)).

           2. (NModa(a) ( Moda(a) ( PModa(a)

              (1) (NModa(a)                                                                   1st premise

              (2) Moda(a)                                                                        2nd premise

              (3) (NModa(a) ( (((b(Moda(b) ( Moda(a,b)) 

                                                                      ( (Moda(a)                DNMODA

              (4) (((b(Moda(b) ( Moda(a,b)) ( (Moda(a)                   MP (1), (3)

              (5) (((b(Moda(b) ( Moda(a,b))                        consequence of (2) and (4)            

              (6) (((b(Moda(b) ( Moda(a,b)) 

                                    ( (b(Moda(b) ( (Moda(a,b))     Theorem of functional calculus

              (7) (b(Moda(b) ( (Moda(a,b))                                         MP (5), (6)

              (8) (b(Moda(b) ( (Moda(a,b)) ( PModa(a)                     DPMODA1, (2)

              (9) PModa(a)                                                                      MP (7), (8)

I used here the rule A(B, (B ( A (see (5)).

Theorem of positive transitivity. PModa(a,b) ( PModa(b,c) ( PModa(a,c), i.e., if a is positive mode of b and b is positive mode of c, then a is positive mode of c.

Proof.    (1) PModa(a,b)                                                          1st premise

              (2) PModa(b,c)                                                          2nd premise

              (3) PModa(a,b) ( Moda(a,b) ( PModa(a)               DPMODA2

              (4) Moda(a,b) ( PModa(a)                                        MP (1), (3)

              (5) PModa(b,c) ( Moda(b,c) ( PModa(b)               DPMODA2

              (6) Moda(b,c) ( PModa(b)                                        MP (2), (5)

              (7) Moda(a,b)                                                             (-omitting (4)

              (8) PModa(a)                                                               (-omitting (4)

              (9) Moda(b,c)                                                             (-omitting (6)

            (10) Moda(a,b) ( Moda(b,c)                                      (-adding (7), (9)

            (11) Moda(a,b) ( Moda(b,c) ( Moda(a,c)          Theorem of transitivity

            (12) Moda(a,c)                                                             MP (10), (11)

           (13) Moda(a,c) ( PModa(a)                                          (-adding (8), (12)

           (14) Moda(a,c) ( PModa(a) ( PModa(a,c)                 DPMODA2

           (15) PModa(a,c)                                                            MP (13), (14)

Theorem of positive mode transfer. PModa(a) ( Moda(a,b)  ( PModa(b)

Proof.  (1) PModa(a)                                                                             1st premise

            (2) Moda(a,b)                                                                            2nd premise

            (3) PModa(a) ( (c(Moda(c,a) ( (Moda(a,c))                        DPMODA1

            (4) (c(Moda(c,a) ( (Moda(a,c))                                            MP (1), (3)

            (5) Moda(c0,a) ( (Moda(a,c0)                                                (c-omitting (4)

            (6) Moda(c0,a)                                                                         (-omitting (5)

            (7) Moda(c0,a) ( Moda(a,b)                                                  (-adding (2), (6)

            (8) Moda(c0,a) ( Moda(a,b) ( Moda(c0,b)                  Theorem of transitivity

            (9) Moda(c0,b)                                                                         MP (7), (8)

          (10) (Moda(a,c0)                                                                        (-omitting (5)

          (11) Moda(a,b) ( (Moda(a,c0)                                                 (-adding (2), (10)

          (12) Moda(a,b) ( (Moda(a,c0) ( (Moda(b,c0)            Theorem of antitransitivity

          (13) (Moda(b,c0)                                                                       MP (11), (12)

          (14) Moda(c0,b) ( (Moda(b,c0)                                                (-adding (9), (13)

          (15) (c(Moda(c,b) ( (Moda(b,c))                                            (c-adding (14)

          (16) (c(Moda(c,b) ( (Moda(b,c)) ( PModa(b)                         DPMODA1

          (17) PModa(b)                                                                              MP (15), (16)
Theorem of weak equality. (i)  a ( a

                                         (ii) a ( b ( b ( a

                                        (iii) a ( b ( b ( c ( a ( c

Proof.   (i)  (1) (c(Moda(c,a) ( Moda(c,a))               Theorem of Functional Calculus

                  (2) (c(Moda(c,a) ( Moda(c,a)) ( a ( a     DE21
                  (3) a ( a                                                      MP (1), (2)

            (ii)  (1) a ( b                                                        premise

                  (2) a ( b ( (c(Moda(c,a) ( Moda(c,b))      DE21
                  (3) (c(Moda(c,a) ( Moda(c,b))                 MP (1), (2)

                  (4) (c(Moda(c,b) ( Moda(c,a))                 conclusion from (3)

                  (5) (c(Moda(c,b) ( Moda(c,a)) ( b ( a     DE21
                  (6) b ( a                                                        MP (4), (5)

           (iii)  (1) a ( b                                                        1st premise

                  (2) b ( c                                                        2nd premise

                  (3) a ( b ( (d(Moda(d,a) ( Moda(d,b))     DE21
                  (4) (d(Moda(d,a) ( Moda(d,b))                 MP (1), (3)

                  (5) Moda(d,a) ( Moda(d,b)                        (d-omitting (4)

                  (6) b ( c ( (d(Moda(d,b) ( Moda(d,c))    DE21
                  (7) (d(Moda(d,b) ( Moda(d,c))                 MP (2), (6)

                  (8) Moda(d,b) ( Moda(d,c)                        (d-omitting (7)

                  (9) Moda(d,a) ( Moda(d,b) ( 

                        Moda(d,b) ( Moda(d,c)                        (-adding (5), (8)

                (10) [Moda(d,a) ( Moda(d,b) ( 

Moda(d,b) ( Moda(d,c)] ( Moda(d,a) ( Moda(d,c) Theorem of Propositional Calculus

                (11) Moda(d,a) ( Moda(d,c)                         MP (9), (10)

                (12) (d(Moda(d,a) ( Moda(d,c))                  (d-adding (11)

                (13) (d(Moda(d,a) ( Moda(d,c)) ( a ( c      DE21
                (14) a ( c                                                          MP (12), (13)

First theorem of mode transfer. Moda(a) ( a ( b  ( Moda(b)

Proof.  (1) Moda(a)                                                   1st premise

           (2) a ( b                                                         2nd premise

           (3) a ( b ( (c(Moda(c,a) ( Moda(c,b))     DE21
           (4) (c(Moda(c,a) ( Moda(c,b))                  MP (2), (3)

           (5) Moda(c,a) ( Moda(c,b)                         (c-omitting (4)

           (6) Moda(c,a) ( Moda(c,b)                        conclusion of (5)

           (7) Moda(a,a) ( Moda(a,b)                        substitution of a for c in (6)

           (8) Moda(a) ( Modus(a)                                Theorem of modusness of mode

           (9) Modus(a)                                                  MP (1), (8)

         (10) Modus(a) ( Moda(a,a)                            Theorem of identical mode

         (11) Moda(a,a)                                               MP (9), (10)

         (12) Moda(a,b)                                               MP (7), (11)

         (13) Moda(a,b) ( Modus(b)                           Lemma 3

         (14) Modus(b)                                                  MP (12), (13)

         (15) Modus(b) ( Moda(b)                                Theorem of modality of modus

         (16) Moda(b)                                                    MP (14), (15)

First theorem of modality criterion. Moda(a,b) ( [(c(Moda(c,a) ( Moda(c,b)) ( Moda(a)]

Proof.  1. Moda(a,b) ( (c(Moda(c,a) ( Moda(c,b)) ( Moda(a)

                (1) Moda(a,b)                                                1st premise

                (2) Moda(c,a)                                                 2nd premise

                (3) Moda(c,a) ( Moda(a,b)                           (-adding (1), (2)

                (4) Moda(c,a) ( Moda(a,b) ( Moda(c,b)    Theorem of transitivity

                (5) Moda(c,b)                                                 MP (3), (4)

                (6) Moda(a,b) ( Moda(a)                               Lemma 3

                (7) Moda(a)

Therefore, we can assert that  Moda(a,b) ( (Moda(c,a) ( Moda(c,b)) and Moda(a,b) ( Moda(a). Since Moda(a,b) does not contain variable c, we can conclude that Moda(a,b) ( (c(Moda(c,a) ( Moda(c,b)). This is the Rule of (-adding in the following form: A(B ( A((cB, if A does not contain c. Thus Moda(a,b) ( (c(Moda(c,a) ( Moda(c,b)) and Moda(a,b) ( Moda(a). From here we can conclude that Moda(a,b) ( ((c(Moda(c,a) ( Moda(c,b)) ( Moda(a)) using the rule A(B, A(C ( A(B(C.

             2. [(c(Moda(c,a) ( Moda(c,b)) ( Moda(a)] ( Moda(a,b)                

                (1) (c(Moda(c,a) ( Moda(c,b))                            1st premise

                (2) Moda(a)                                                              2nd premise

                (3) Moda(c,a) ( Moda(c,b)                                   (c-omitting (1)

                (4) Moda(a,a) ( Moda(a,b)                            Substitution of a for c in (3)

                (5) Moda(a) ( Modus(a)                                   Theorem of modusness of mode

                (6) Modus(a)                                                             MP (2), (5)

                (7) Modus(a) ( Moda(a,a)                                 Theorem of identical mode

                (8) Moda(a,a)                                                           MP (6), (7)

                (9) Moda(a,b)                                                           MP (4), (8)

From the First theorem of modality criterion we can conclude that the following theorem is true.

Theorem of relation of equalities. a = b ( a ( b ( Moda(a) ( Moda(b) 

Taking into account Theorem of mode and modus equivalence we can represent Theorem of relation of equalities also in the following form.

Theorem of relation of equalities*.  a = b (  a ( b ( Modus(a) ( Modus(b)  

Theorem of modality of equality. a = b ( Moda(a)

Proof.    (1) a = b                                                                 premise

              (2) a = b ( a ( b ( Moda(a) ( Moda(b)     Theorem of relation of equalities

              (3) a ( b ( Moda(a) ( Moda(b)                            MP (1), (2)

              (4) Moda(a)                                                           (-omitting (3)

Taking into account Theorem of mode and modus equivalence, we can also assert

Theorem of modality of equality*. a = b ( Modus(a)

Second theorem of modality criterion. Moda(a,b) ( [(c(Moda(b,c) ( Moda(a,c)) ( Modus(b)]

Proof.  1. Moda(a,b) ( [(c(Moda(c,a) ( Moda(c,b)) ( Modus(b)]

                (1) Moda(a,b)                                                      1st premise

                (2) Moda(a,b) ( (c(Moda(b,c) ( Moda(a,c))     AO1

                (3) (c(Moda(b,c) ( Moda(a,c))                          MP (1), (2)

                (6) Moda(a,b) ( Modus(b)                                  Lemma 3

                (7) Modus(b)                                                       MP (1), (6)

Therefore Moda(a,b) ( (c(Moda(b,c) ( Moda(a,c)) and Moda(a,b) ( Modus(b). From here we can conclude that Moda(a,b) ( ((c(Moda(b,c) ( Moda(a,c)) ( Modus(b)).

             2. [(c(Moda(b,c) ( Moda(a,c)) ( Modus(b)] ( Moda(a,b)                

                (1) (c(Moda(b,c) ( Moda(a,c))                          1st premise

                (2) Modus(b)                                                       2nd premise

                (3) Moda(b,c) ( Moda(a,c)                             (c-omitting (1)

                (4) Moda(b,b) ( Moda(a,b)                        Substitution of b for c in (3)

                (5) Modus(b) ( Moda(b,b)                         Theorem of identical mode

                (6) Moda(b,b)                                                      MP (2), (5)

                (7) Moda(a,b)                                                      MP (4), (6)

From the second criterion of modality we can obtain the following expression of equality.

            a = b ( (c(Moda(b,c) ( Moda(a,c)) ( Modus(a) ( Modus(b)  

From this result and Theorem of relation of equalities*  we obtain

Theorem of relation of equalities**.  a = b  (  a =21 b  (  a =12 b 

The following theorem can be proved:

Theorem of upper and lower equivalence. [(c(Moda(c,a) ( Moda(c,b))] ( [(c(Moda(a,c) ( Moda(b,c)]

Proof. 1. [(c(Moda(c,a) ( Moda(c,b))] ( [(c(Moda(a,c) ( Moda(b,c)]

       (1) (c(Moda(c,a) ( Moda(c,b))                                                           premise

       (2) Moda(c,a) ( Moda(c,b)                                                              (c-omitting (1)

       (3) Moda(a,a) ( Moda(a,b)                                               substitution of a for c in (2)

       (4) Moda(b,a) ( Moda(b,b)                                               substitution of b for c in (2)

  +1 (5) Moda(a,c)                                                                                       premise
       (6) Moda(a,c) ( Moda(a)                                                                  Lemma 3

       (7) Moda(a)                                                                                       MP (5), (6)

       (8) Moda(a) ( Moda(a,a)                                                  Theorem of identical mode*
       (9) Moda(a,a)                                                                                     MP (7), (8)

     (10) Moda(a,b)                                                                         consequence of (3), (9)

     (11) Moda(a,b) ( Modus(b)                                                                 Lemma 3
     (12) Modus(b)                                                                                      MP (10), (11)

     (13) Modus(b) ( Moda(b,b)                                                Theorem of identical mode

     (14) Moda(b,b)                                                                                     MP (12), (13)

     (15) Moda(b,a)                                                                         consequence of (4), (14)

     (16) Moda(b,a) ( Moda(a,c)                                                             (-adding (5), (15)

     (17) Moda(b,a) ( Moda(a,c) ( Moda(b,c)                                Theorem of transitivity

     (18) Moda(b,c)                                                                                   MP (16), (17)

-1  (19) Moda(a,c) ( Moda(b,c)                                                     omitting of premise (5)

By the same way one can prove

     (20) Moda(b,c) ( Moda(a,c)                                                                
     (21) Moda(a,c) ( Moda(b,c)                                                            (-adding (19), (20)

     (22) (c(Moda(a,c) ( Moda(b,c))                                                        (c-adding (21)

On the analogy of the first part, the second part of the proof can be proved.
I used here the rule “omitting of premise (j)” (see (5)). Namely, if proof of A1 ( Ak is done in the suppositional form

+i (j)       A1                               premise

    (j+1)   A2
    .

    .

    .

    (j+k-1) Ak
then one can conclude that A1 ( Ak. In accordance with this, I can write formula A1 ( Ak in the line (j+k), denoting this case as “omitting of premise (j)” to the right of line (j+k):

-i (j+k) A1 ( Ak                         omitting of premise (j)

To the left of the first and last lines of this proof I shall use marks “+i” (at the beginning) and “-i” (at the end), where “i” is the number of such proof in general proof. 

It is clear that the restrictions on the premise variables in proof (j)-(j+k-1) are abolished for the line (j+k) and below. 

From here, one can conclude that weak equality can be represented in the following form:

                  DE21*.   a ( b ( (c(Moda(a,c) ( Moda(b,c))

Theorem of weak inclusion order. 

(i) a ( a

(ii) (a ( b) ( (b ( a) ( a ( b 

(iii) (a ( b ( b ( c) ( a ( c

Proof.(i) and (ii) are directly deduced from definitions DI21 and DE21.

         (iii)(1) a ( b                                                             1st premise

             (2) b ( c                                                              2nd premise

             (3) (a ( b) ( (d(Moda(d,a)( Moda(d,b))        DI21
             (4) (d(Moda(d,a)( Moda(d,b))                       MP (1), (3)

             (5) Moda(d,a)( Moda(d,b)                               (d-omitting (4)

             (7) (b ( c) ( (d(Moda(d,b)( Moda(d,c))        DI21
             (8) (d(Moda(d,b)( Moda(d,c))                        MP (2), (7)

             (9) Moda(d,b)( Moda(d,c)                               (d-omitting (8)

           (10) Moda(d,a)( Moda(d,c)                               conclusion of (5) and (10)

           (11) (d(Moda(d,a)( Moda(d,b))                        (d-adding (10)

           (12) (d(Moda(d,a)( Moda(d,b)) ( a ( c           DI21
           (13) a ( c 

Theorem of inclusion order determines relation “(” as nonstrong order, co-ordinated with weak equality “(”.

Theorem of equality consequence. a =1234 b ( a=12b

Proof.   (1) a =1234 b                                                                                                premise

            (2) a =1234 b ( Moda(a)(Moda(b)((c(d(f(Mod(a,c,d,f)(Mod(b,c,d,f))  DSE1234
            (3) Moda(a)(Moda(b)((c(d(f(Mod(a,c,d,f)(Mod(b,c,d,f))                  MP (1), (2)

            (4) (c(d(f(Mod(a,c,d,f)(Mod(b,c,d,f))                                               (-omitting (3)

            (5) Mod(a,c,d,f)(Mod(b,c,d,f)                                                    (c(d(f-omitting (10)

            (6) (d(fMod(a,c,d,f) ( (d(fMod(b,c,d,f)                                        consequence of (5)

            (7) (c((d(fMod(a,c,d,f) ( (d(fMod(b,c,d,f))                                    (c-adding (6)

            (8) Moda(a)(Moda(b)                                                                         (-omitting (3)

            (9) Moda(a)(Moda(b)((c((d(fMod(a,c,d,f) ( (d(fMod(b,c,d,f))     (-adding (7), (8)

          (10) Moda(a)(Moda(b)((c((d(fMod(a,c,d,f) ( (d(fMod(b,c,d,f)) ( a=12b   DSE1234                              

          (11) a=12b                                                                                                MP (9), (10)

Theorem of one-valueness. Mod(x,b,c,f) ( Mod(y,b,c,f) ( x =1234 y

Proof.    (1) Mod(x,b,c,f)                                             1st premise

              (2) Mod(y,b,c,f)                                             2nd premise

              (3) Mod(x,b,c,f) ( (x =1234 f(b,c))                        AO2

              (4) x =1234 f(b,c)                                                   MP (1), (3)

              (5) Mod(y,b,c,f) ( (y =1234 f(b,c))                        AO2

              (6) y =1234 f(b,c)                                                   MP (2), (5)

              (7) f(b,c) =1234 y                                           consequence of DSE1234
              (8) x =1234 f(b,c) ( f(b,c) =1234 y                      (-adding (4), (7)

              (9) x =1234 f(b,c) ( f(b,c) =1234 y  (  x =1234 y       consequence of DSE1234
              (10) x =1234 y                                                          MP (8), (9)

6. (-Notation

Let us introduce the following new definitions.

(-Definitions:

D(.  a ( b  (  Moda(b,a), where “a ( b” is read as “a is b”

D(P.  a (1 b  (  PModa(b,a), where “a (1 b” is read as “a positively is b”

D(*. a (* b  (  Model(b,a), where “a (* b” is read as “b is model for a”

I hope, these definitions are clearing to some degree connection between St.Lesniewski’s “Ontology” and my version of Ontology. Like Lesniewski I try to construct a logical system of Ontology including some functor “(”. However my approach is based on more primary predicate Mod with the help of which we can later define a functor similar “(-functor” of Lesniewski. 

Existential definition

DPEx. Ex(a)  (  PModa(a), where “Ex(a)” is read as “a exists”

Definitions of maximality
DU. UModus(a)  (  Modus(a) ( (b(Moda(a,b) ( Moda(b,a)), where “UModus(a)” is read as “a is at least locally maximum modus”

Second theorem of mode transfer. a ( a ( a ( b  ( Moda(b)

Proof.    (1) a ( a                                                              1st premise

             (2) a ( b                                                              2nd premise

             (3) a ( a  ( Modus(a)                                          Lemma 3, D(1.

             (4) a ( b  (  (c(a ( c  ( b ( c)                           DI21, D(1.

             (5) Modus(a)                                                       MP (1), (3)

             (6) (c(a ( c  ( b ( c)                                          MP (2), (4)

             (7) a ( c  ( b ( c                                                 (c-omitting (6)

             (8) a ( a  ( b ( a                                                 substitution of a for c in (7)

             (9) Modus(a) ( a ( a                                           Theorem of identical mode, D(1.

           (10) a ( a                                                               MP (5), (9)

           (11) b ( a                                                               MP (8), (10)

           (12) b ( a ( Modus(b)                                           Lemma 3, D(1.

           (13) Modus(b)                                                       MP (11), (12)

           (14) Modus(b) ( Moda(b)                                     Theorem of modality of modus

           (15) Moda(b)                                                         MP (13), (14)

Theorem of ((-coordination. a ( b  ( b ( b ( b ( a

Proof.     1. a ( b  ( a ( a ( a ( b

              (1) a ( b                                                                                         Premise

              (2) a ( b ( (c(b ( c ( a ( c) ( Moda(b)                                       First theorem of

                                                                                                              modality criterion, D(1.

             (3) (c(b ( c ( a ( c) ( Moda(a)                                                    MP (1), (2)

             (4) (c(b ( c ( a ( c) ( (b ( a)                                                       DI21, D(1.

             (5) (c(b ( c ( a ( c)                                                                       (-omitting (3)

             (5) b ( a                                                                                         MP (4), (5)

             (6) Moda(b)                                                                                     (-omitting (3)

             (7) Moda(b) ( Modus(b)                                             Theorem of modusness of mode                          

             (8) Modus(b)                                                                                   MP (6), (7)

             (9) Modus(b) ( b ( b                                                Theorem of identical mode, D(1.

           (10) b ( b                                                                                           MP (8), (9)

           (11) b ( b  (  b ( a                                                                            (-adding (5), (11)

          2. b ( b ( b ( a  (  a ( b                                                    

             (1) b ( b                                                                                           1st premise

             (2) b ( a                                                                                          2nd premise

             (3) b ( b  ( Modus(b)       D(1., Theorem of modus and identical mode equivalence

             (4) Modus(b)                                                                                   MP (1), (3)

             (5) Modus(b) ( Moda(b)                                           Theorem of modality of modus                                             

             (6) Moda(b)                                                                                    MP (4), (5)

             (7) b ( a  (  (c(b ( c  ( a ( c)                                                       DI21, D(1.

             (8) (c(b ( c  ( a ( c)                                                                      MP (2), (7)

             (9) Moda(b) ( (c(b ( c  ( a ( c)                                                    (-adding (6), (8)

           (10) Moda(b) ( (c(b ( c  ( a ( c) ( a ( b      First theorem of modality criterion, D(1.                             

           (11) a ( b                                                                                           MP (9), (10)

Theorem of positive sufficiency. (x(a ( x ( PModa(x) ( b ( x) ( (b ( a)

Proof.   (1) (x(a ( x ( PModa(x) ( b ( x)                                                     premise

             (2) a ( x ( PModa(x) ( b ( x                                                   (x-omitting (1)

             (3) Modus(x) ( NModa(b) ( a ( b        Theorem of null mode generality, D(1.

             (4) a ( x ( Moda(x)                                                                 Lemma 3, D(1.

             (5) Moda(x) ( Modus(x)                               Theorem of modusness of mode

             (6) a ( x ( Modus(x)                                                   consequence of (4) and (5)

             (7) a ( x ( NModa(b) ( b ( x                                      consequence of (3) and (6)

             (8) a ( x ( Moda(x)                                                                 Lemma 3, D(1.

             (9) PModa(x) ( (NModa(x) ( Moda(x)       Theorem of mode incompatibility

           (10) (a ( x ( PModa(x))((a ( x ( NModa(b)) ( b ( x   consequence of (2) and (7)

           (11) (a ( x ( (PModa(x)( NModa(b))) ( b ( x              consequence of (10)

           (12) a ( x ( b ( x                                            consequence of (8), (9) and (11)

Therefore one can conclude that (x(a ( x ( PModa(x) ( b ( x) ( (a ( x ( b ( x). Since variable x does not include into antecedent as free variable, then we can adding quantor (x to consequent. Hence (x(a ( x ( PModa(x) ( b ( x) ( (x(a ( x ( b ( x), i.e. (x(a ( x ( PModa(x) ( b ( x) ( (b ( a) accordingly DI21 and D(1. 

I used in the proof of the theorem the following deductions from propositional calculus.

A(B, B(C(D ( A(C(D (see (7))

A(B, C(B ( A(C(B (see (10))

A(B, C(((D(B), A((C(D) ( E ( A(E (see (12))

7. Ontological Definitions

I shall accept the following scheme of Ontological Definitions in Ontology:

D(ik1,…,km. 

Mi ( [(xk1…(xkm((yp1...(ypnMod(xk,C,yp) ( Modk1…km(xk1,…,xkm) ( ((xk1,…,xkm))],

where variables xk1,…,xkm stand at the places number k1,…, km accordingly, variables yp1,..., ypn stand at the places number p1,..., pn accordingly in the first predicate Mod. Then m+n = 3, all i-s, kj-s and ps-s, where j=1,.., m, s=1,.., n, do not equal between each other. Term C is a definable term and C stands at the place number i in the first predicate Mod. All these conditions are designated by the symbol Mod(xk,C,yp). Variables with index 4 (standing at the place number 4 in predicates Mod) are variables of type (N,N)/N. Another variables have type N. 

Finally, Mi is 

1. Expression (xk1…(xkm(t(((xk1,…,xkm) ( x1 ( t  (  (((xk1,…,xkm))x1[t]) iff  i=2 and there exists kj = 1 between all kj, where j=1,2,…,m. Expression (((xk1,…,xkm))x1[t]  is the result of substitution of variable t for variable x1 in the expression ((xk1,…,xkm). 

2. Expression (xk1…(xkm(t(((xk1,…,xkm) ( t ( x2  (  (((xk1,…,xkm))x2[t]) iff  i=1 and there exists kj = 2 between all kj, where j=1,2,…,m. Expression (((xk1,…,xkm))x2[t]  is the result of substitution of variable t for variable x2 in expression ((xk1,…,xkm). 

3. (p(p(p) in the other cases, where p is a propositional variable. 

If the definable term is a functor F, and 
[image: image14.wmf]а

 is a number of arguments of F, F(
[image: image15.wmf]а

) has either type N, when i < 4, or type (N,N)/N, when i = 4, then I shall accept the following more general scheme of Ontological Definitions:

D(aik1…km. 

Mi ( [(xk1…(xkm(
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((yp1...(ypnMod(xk,F(
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),yp) ( Modk1…km(xk1,…,xkm) ( ((xk1,…,xkm,
[image: image18.wmf]а

))],

where notation is the same as earlier and, besides, 
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 is a sequence (a1,a2,…,aN) of arguments of F, and symbol (
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 is (a1(a2…(aN. 
Here Mi is 

1. Expression (
[image: image21.wmf]а

(xk1…(xkm(t(((xk1,…,xkm,
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) ( x1 ( t  (  (((xk1,…,xkm,
[image: image23.wmf]а

))x1[t]) iff  i=2 and there exists kj = 1 between all kj, where j=1,2,…,m. Expression (((xk1,…,xkm,
[image: image24.wmf]а

))x1[t]  is the result of substitution of variable t for variable x1 in the expression ((xk1,…,xkm,
[image: image25.wmf]а

). 

2. Expression (
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(xk1…(xkm(t(((xk1,…,xkm,
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) ( t ( x2  (  (((xk1,…,xkm,
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))x2[t]) iff  i=1 and there exists kj = 2 between all kj, where j=1,2,…,m. Expression (((xk1,…,xkm,
[image: image29.wmf]а

))x2[t]  is the result of substitution of variable t for variable x2 in the expression ((xk1,…,xkm,
[image: image30.wmf]а

). 

3. (p(p(p) in the other cases, where p is a propositional variable. 

I shall call property ((xk1,…,xkm) or ((xk1,…,xkm,
[image: image31.wmf]а

) as modal (modus) property iff the case 1 (2) takes place. 

For example, we have

D(21. (a(b(P(a) ( a ( b  (  P(b)) ( [(a(C ( a ( Moda(a)  ( P(a))] – the case of modus-modal definition of modus C. Condition (a(b(P(a) ( a ( b  (  P(b)) defines property P as modal property here.

D(12. (a(b(Q(a) ( b ( a  (  Q(b))  ( [(a(a ( C ( Modus(a)  ( Q(a))] – the case of modal-modus definition of mode C. Condition (a(b(Q(a) ( b ( a  (  Q(b)) defines property Q as modus property here.

D(23.(a(C (* a ( Model(a)  ( Q(a)) – the case of modus-model definition of modus C.

D(213. (a(b(t(P(a,b) ( a ( t  (  P(t,b)) ( [(a(b(Mod(a,C,b) ( Mod13(a,b)  ( P(a,b)] – the case of modus-modal-model definition of modus C. Condition (a(b(t(P(a,b) ( a ( t  (  P(t,b)) defines property P as modal property here.

Since a ( C ( a ( a ( (C ( a) ( C ( C, i.e.,

a ( C ( a ( a  ( (b(C ( b ( a ( b) ( (b(C ( b),

then, taking into account D(12, we can use the definitions of the following forms:

D(*12.  (a(b(P(a) ( a ( b  (  P(b)) (  [a ( C ( a ( a  ( (b(b ( b (P(b)  ( a ( b)) ( (b(b ( b (P(b))],

D(**12. (a(b(P(a) ( a ( b  (  P(b)) (  [a = C ( a ( a  ( (b(P(b)( b ( b  ( a ( b))]

Thus we can use two new kinds of ontological definitions D(*12 and D(**12, if primary definition D(12 is done. 

28 kinds of Ontological Definitions of type D(ik1,…,km and D(aik1,…,km are defined in the general case. I would like to note that Moda(a) ( a ( a  and  Modus(a) ( a ( a. Therefore we can write consequents of  D(21 and D(12 in the forms (a(C ( a ( a ( a  ( P(a)) and (a(a ( C ( a ( a  ( Q(a)) accordingly. 

8. Rule of Extensionality

Let Ft be a formula, which does not include variables x and y, and Ft includes free variable t. Let Fx be Ft, where variable x stands for t in Ft. Then we can prove the following theorem (see idea of the proof of the theorem in 
).

Theorem of substitution. (x=y ( Fx) ( Fy
Proof.      (1) x=y                                                     1st premise

               (2) Fx                                                            2nd premise

Let us introduce the following modus-modal definition.

        (D)  (z…(u(t(s(Ft ( t ( s  ( Fs) ( [(z…(u(t(G(z,…,u) ( t ( t ( t ( Ft)], where t,u,…,z are free variables in Ft only. Let F be a modal property, i.e., antecedent (z…(u(t(s(Ft ( t ( s  ( Fs) is true. Then consequent (z…(u(t(G(z,…,u) ( t ( t ( t ( Ft) is also true and we have

               (3) x=y ( x ( y ( y ( x                             DE, D(1.

               (4) x ( y ( y ( x                                       MP (1), (3)

               (5) x ( y                                                   (-omitting (4)

               (6) x ( y ( x ( x            Lemma3, Theorem of modus and identical 

                                                                     mode equivalence, D(.                         

               (7) x ( x                                                   MP (5), (6)

               (8) x ( x ( Fx                                           (-adding (2), (7)

               (9) x ( x ( Fx ( G(z,…,u) ( x                  (D)

             (10) G(z,…,u) ( x                                       MP (8), (9)

             (11) y ( x                                                    (-omitting (4) 

             (12) x ( y ( G(z,…,u) ( x                           (-adding (5), (10)

             (13) x ( y ( G(z,…,u) ( x ( G(z,…,u) ( y  Theorem of transitivity

             (14) G(z,…,u) ( y                                       MP (12), (13)

             (15) G(z,…,u) ( y ( y ( y ( Fy                  (D)

             (16) y ( y ( Fy                                               MP (14), (15)

             (17) Fy                                                        (-omitting (16) 

I would like again to note that the formula Ft must be a modal property relatively G(z,…,u) in this case.

However more general theorem can be proved here. Like Lesniewski I shall accept Rule of Extensionality. “According to this rule expressions of a specified form may be subjoined to the system irrespective of what theorems were subjoined thereto before. The rule of extensionality is thus an axiomatic rule. I shall denote expressions subjoined to the system on the basis of the rule of extensionality as laws of extensionality. I proceed to give a description of these expressions. Let the variable ( represent proposition-formative functors of one argument and let the not equiform variables ( and ( be arguments of the functor”
. Then Slupecki writes that the laws of extensionality are implications, the consequent of which have the following structure:

(l) (( {((() ( ((()}.

The form of the antecedents in the laws of extensionality depends on the semantic category of the variables ( and (. If they are nominal variables not having the form of the variable x, the antecedent in the law of extensionality has the following structure in L-Ontology:

(x(x (L (  (  x (L ()

Therefore we have here the law of extensionality as follows:

(LE) (x(x (L (  (  x (L () ( (({((() ( ((()}

In general case, the following kinds of Ontological Laws of Extensionality can be accepted in Ontology:

LE ik1…km. ( ( ik1…km (  ( (({((() ( ((()},

where  ( ik1…km  is one of the 28 weak equalities, and variables (, ( have type (N,N)/N, when i = 4, otherwise (, ( have type N. For example:

LE12. a (12 b ( (({((a) ( ((b)}

LE21. a (21 b ( (({((a) ( ((b)}

LE1234. a (1234 b ( (({((a) ( ((b)}

LE2134. a (2134 b ( (({((a) ( ((b)}

LE3124. a (3124 b ( (({((a) ( ((b)}

LE4123. f (4123 g ( (({((f) ( ((g)},

By analogy, corresponding versions of Ontological Laws of Extensionality can be introduced for every categorial type a, where a has form d/N. For example:

LEa12. (
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(b(
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) (12 c(
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)) ( (({((b) ( ((c)}

LEa21. (
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(b(
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) (21 c(
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)) ( (({((b) ( ((c)}

LEa1234. (
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(b(
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) (1234 c(
[image: image40.wmf]x

)) ( (({((b) ( ((c)}

LEa2134. (
[image: image41.wmf]x

(b(
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) (2134 c(
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)) ( (({((b) ( ((c)}

LEa3124. (
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(b(
[image: image45.wmf]x

) (3124 c(
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)) ( (({((b) ( ((c)}

LEa4123. (
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(f(
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) (4123 g(
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)) ( (({((f) ( ((g)},

where 
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 is a sequence of arguments x1,…,xn of functors b,c,f,g, while b,c,f,g have type d/N, and b(
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), c(
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) have type N, f(
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), g(
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) have type (N,N)/N. 

I shall accept the version of Ontology with LE21, LE3124, LE4123, LEa21, LEa3124, LEa4123 below.
Let us say that index form ik1…kn is included into an index form jp1…pm iff  i=j and numbers k1,…, kn are between numbers p1,…, pm. 
One can show that Law of Extensionality LEjp1…pm is infered from the Law of Extensionality LEik1…kn iff index form ik1…kn is included into the index form jp1…pm. For example, acceptane of LE21 (LEa21) permits to prove Laws LE213, LE214, LE2134 (LEa213, LEa214, LEa2134). The same is true for the Law LE12 (LEa12). Besides, we have that LE21 (LEa21) is equivalent to LE12 (LEa12) in accordance with Theorem of upper and lower equivalence.

One can prove the following theorem with the help of (LE21).

Extensional theorem of substitution. a = b ( (((((a) ( ((b))

Proof.    (1) a = b                                                                                    premise

              (2) a = b ( a ( b ( Moda(a) ( Moda(b)             Theorem of relation of equalities

              (3) a ( b ( Moda(a) ( Moda(b)                                             MP (1), (2)

              (4) a ( b                                                                              (-omitting (3)

        (5) a ( b ( (((((a) ( ((b))                                                     LE21
        (6) (((((a) ( ((b))                                                               MP (4), (5)

Extensional theorem of substitution*. [a = b ( ((a)]  (  ((b)

Proof.  (1) a = b                                            1st premise

            (2) ((a)                                             2nd premise

            (3) a = b ( (((((a) ( ((b))  Extensional theorem of substitution          

            (4) (((((a) ( ((b))                          MP (1), (3)

            (5) ((a) ( ((b)                               ((-omitting (4)

            (6) ((b)                                 consequence of (2), (5)
If Elementary Ontology is a part of Ontology, which, in particular, does not include the Rule of Extensionality, then only Theorem of substitution takes place in this part. And extensional theorems of substitution belong to Non-Elementary Ontology. 

Definitions of extremum constants

DExtr1. 
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1

( a (  Modus(a)

DExtr2. 
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0

( a (  NModa(a)

Really, the following theorems can be proved here:

Theorem of modality of “modus” property. (a(b(Modus(a) ( a ( b  ( Modus(b))

Proof. See D( and Lemma3 and Theorem of modusness of mode.

Theorem of modality of “null mode” property. (a(b(NModa(a) ( a ( b  ( NModa(b))

Proof. See D( and Second theorem of null mode*.

Definitions DExtr1 and DExtr2 are deduced from the theorems and scheme of Ontological Definition D21.

I shall denote 
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0

 and 
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  as “modal zero” and “modal unity” respectively. 

Theorem of mode zero. a = 
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 ( NModa(a)

Proof.  1. a = 
[image: image60.wmf]m

0

 ( NModa(a)

             (1) a = 
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0

                                                                                  premise

             (2) a = 
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0

 ( (a ( 
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0

 ( 
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0

( a)                                                        DE

             (3) a ( 
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0

 ( 
[image: image66.wmf]m

0

( a                                                                     MP (1), (2)

             (4) 
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0

( a                                                                                 (-omitting (3)

             (5) 
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( a  ( NModa(a)                                                               DExtr2

             (6) NModa(a)                                                                            MP (4), (5)

         2. NModa(a) ( a = 
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            (1) NModa(a)                                                                              premise

            (2) NModa(a) ( 
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0

( a                                                                 Dextr2

            (3) 
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0

( a                                                                                    MP (1), (2)

            (4) 
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( 
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0

 ( NModa(
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0

)                                      substitution of 
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0

 for a in DExtr2

            (5) 
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0

( a  ( Modus(
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0

)                                                         D(, Lemma 3

            (6) Modus(
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0

)                                                                          MP (3), (5)

            (7) Modus(
[image: image79.wmf]m

0

) ( 
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0

( 
[image: image81.wmf]m

0

                                        Theorem of identical mode

            (8) 
[image: image82.wmf]m

0

( 
[image: image83.wmf]m

0

                                                                                 MP (6), (7)

            (9) NModa(
[image: image84.wmf]m

0

)                                                                          MP (4), (8)

          (10) NModa(
[image: image85.wmf]m

0

) ( Moda(a) ( a ( 
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0

            Theorem of null mode generality
          (11) 
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0

( a  ( Moda(a)                                                            D(, Lemma 3
          (12) Moda(a)                                                                             MP (3), (11)

          (13) NModa(
[image: image88.wmf]m

0

) ( Moda(a)                                             (-adding (9), (12)

          (14) a ( 
[image: image89.wmf]m

0

                                                                                MP (10), (13)

          (15) 
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0

( a  (  a ( 
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0

                                                        (-adding (3), (14)

          (16) (
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0

( a  (  a ( 
[image: image93.wmf]m

0

) ( a =
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0

                                                    D(, DE

          (17) a =
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0

                                                                               MP (15), (16)

By the same way the following theorem can be proved.

Theorem of mode unity. a = 
[image: image96.wmf]m

1

 ( IModus(a)

9. Set Definitions in Ontology
Let P be a functor of the categorail type a/S, i.e. P(x) is a property of an object x, where x has type a. I shall develop some ideas of set theoretical constructions in Ontology below. 
DSET1. x ( <P> ( x ( x  ( P(x)

A functor F[P] of the type (N,N/S)/S is defined here, i.e., F[P](x) ( x(<P>. I shall use the designation “(<P>” for F[P], i.e., (<P>(x) is x(<P> in this case. Symbol “(” is a part of the designation of the functor without any independent sense. Therefore DSET1 is a propositional definition in Ontology. The same assertion is true for the rest definitions presented lower.
DSET2. x ( (<P>(<Q>) ( x ( x  ( (P(x) ( Q(x))

DSET3. x ( (<P>(<Q>) ( x ( x  ( (P(x) ( Q(x))

Here Q is a property also. 

DSET4. x ( 
[image: image97.wmf]>

<

P

 ( x ( x  ( (P(x)

DSET5. <P> 
[image: image98.wmf]Z

=

 <Q> ( (x(x (<P> ( x(<Q>)
A functor F of the type (S/N, S/N)/S is defined in DSET5. Therefore F(P,Q) is <P> 
[image: image99.wmf]Z

=

 <Q> and symbol “
[image: image100.wmf]Z

=

” is a part of the designation of the functor without any independent sense. All these notes are true for the following definition.

DSET6. <P> 
[image: image101.wmf]Z

Í

 <Q> ( (x(x (<P> ( x(<Q>)

DSET7. Set(<P>) ( (x(x(x ( P(x)) ( (P ( 0Pr)
As earlier, a functor F of the type (S/N)/S is defined in DSET5, where F(P) ( Set(<P>). 0Pr is the functor F of the type (S/N)/S, where (x(0Pr(x) ( 0). 

DSET8. AtSet(<P>) ( (x(x(x ( P(x)) ( (x(y(P(x) ( P(y) ( x (2134 y)

My main idea is in a manner of set definitions when we can work without sets as independent principles, using a language at the same time, where these principles “as if exist”. I shall show some possibilities of a such language below with the help of the presented abowe definitions.

Let ((<P>) be a formula in Ontology that have expressions <P> as its parts. For example, Set(<P>) or  <P> 
[image: image102.wmf]Z

Í

 <Q>  are instances of such formulae. Then we have possibility to represent the formula ((<P>) as an equivalent formulae <(>(P), not including <P>, but including the property P for any case of <P> in (. Really, every sign <P> is introduced by the appropriate definitions including P. Using the definitions, we are able to pass from ((<P>) to <(>(P) in every case. For example, one can use the formula (x(x(x ( P(x)) ( (P ( 0Pr) instead of  Set(<P>) in accordance with DSET7, and so on. By the same way, one can pass from the formula ((<P>) to an equivalent formula [(]((<P>), including functor (<P> for every case of <P> (I shall use the symbol “DSET” for the justification of the equivalence ((<P>) ( <(>(P) and ((<P>) ( [(]((<P>) in proofs). 
Then one can use the following definitions. 
DSET9. (<P> ((<P>) ( (P <(>(P)

DSET10. (<P> ((<P>) ( (P <(>(P)

With the help of the definitions, we “as if introduce” “set variables” <P> and quantification on them. Actually, only property variable P are given here. 
With the help of the formula [(]((<P>), we can prove the following theorem for “sets”.
Set Law of Extensionality. [(<P> 
[image: image103.wmf]Z

=

 <Q>) ( ((<P>)]  ( ((<Q>)
Proof. (1) <P> 
[image: image104.wmf]Z

=

 <Q>                                                            1st premise
          (2) ((<P>)                                                                    2nd premise

          (3) ((<P>) ( [(]((<P>)                                                   DSET

          (4) [(]((<P>)                                                 consequence of (2), (5)                

          (5) <P> 
[image: image105.wmf]Z

=

 <Q> ( (x(x (<P> ( x(<Q>)                        DSET5

          (6) (x(x (<P> ( x(<Q>)                                             MP (1), (5)
          (7) (x(x (<P> ( x(<Q>) 
                         ( ((((((<P>) ( (((<Q>))    Prothotetical Law of Extensionality
          (8) ((((((<P>) ( (((<Q>))                                      MP (6), (7)
          (9) (((<P>) ( (((<Q>)                                         ((-omitting (10)

        (10) [(]((<P>) ( [(]((<Q>)               substitution of [(] for ( in (9)

        (11) [(]((<Q>)                                                consequence of (4), (10)                

        (12) [(]((<Q>) ( ((<Q>)                                                 DSET
        (13) ((<Q>)                                                      consequence of (11), (12)               

I would like to note that line (10) in the proof is introduced not only with the help of substitution but with the help of substitution and relevant definition (see. 
). However, since definitions and substitutions in Ontology are equivalent to functional substitutions, one can use the last in the proofs.
Now we can prove some theorems about “sets”. 
TSET1. 
[image: image106.wmf]>

<

P



 EMBED Equation.3  [image: image107.wmf]Z

=

<(P>

Proof. It is sufficient to prove (x(x (
[image: image108.wmf]>

<

P

  (  x (<(P>) here.

          1. (x(x (
[image: image109.wmf]>

<

P

  (  x (<(P>)

           +1 (1) x (
[image: image110.wmf]>

<

P

                                           premise

                (2) x (
[image: image111.wmf]>

<

P

 ( x ( x  ( (P(x)                  DSET4

                (3) x ( x  ( (P(x)                                     MP (1), (2)

                (4) x ( x  ( (P(x) ( x (<(P>                     DSET1

                (5) x ( <(P>                                           MP (3), (4)

          -1  (6) x (
[image: image112.wmf]>

<

P

  (  x (<(P>              omitting of premise (1)

                (7) (x(x ( 
[image: image113.wmf]>

<

P

  (  x ( <(P>)           (x-adding (6)

         2. (x(x (<(P>  (  x (
[image: image114.wmf]>

<

P

)

           +1 (1) x ( <(P>                                           premise

                (2) x (<(P> ( x ( x  ( (P(x)                  DSET1
                (3) x ( x  ( (P(x)                                     MP (1), (2)

                (4) x ( x  ( (P(x) ( x (
[image: image115.wmf]>

<

P

                 DSET4
                (5) x (
[image: image116.wmf]>

<

P

                                           MP (3), (4)

          -1  (6) x (<(P>  (  x (
[image: image117.wmf]>

<

P

              omitting of premise (1)

                (7) (x(x (<(P>  (  x (
[image: image118.wmf]>

<

P

)           (x-adding (6)

TSET2. (<P>(<Q>) 
[image: image119.wmf]Z

=

 <P(Q>
Proof. 1. (x(x ((<P>(<Q>)  (  x (<P(Q>)
           +1 (1) x ((<P>(<Q>)                                                   premise
                (2) x ((<P>(<Q>)  ( x ( x  ( (P(x) ( Q(x))           DSET2

                (3) x ( x  ( (P(x) ( Q(x))                                        MP (1), (2)

                (4) x ( x  ( ([P( Q](x))                              Definition of P(Q (see below)

                (5) x ( x  ( ([P( Q](x)) ( x (<P(Q>                       DSET1

                (6) x (<P(Q>                                                          MP (4), (5)

          -1  (7) x ((<P>(<Q>)  (  x (<P(Q>                 omitting of premise (1)

               (8) (x(x ((<P>(<Q>)  (  x (<P(Q>)                  (x-adding (7)

        2. (x(x (<P(Q>  (  x ((<P>(<Q>))

           +1 (1) x (<P(Q>                                                        premise

                (2) x (<P(Q>  ( x ( x  ( ([P(Q](x))                    DSET1

                (3) x ( x  ( ([P ( Q](x))                                        MP (1), (2)

                (4) x ( x  ( (P(x)( Q(x))                              Definition of P(Q (see below)

                (5) x ( x  ( (P(x)( Q(x)) ( x ((<P>(<Q>)           DSET2

                (6) x ((<P>(<Q>)                                              MP (4), (5)

          -1  (7) x ((<P>(<Q>)  (  x (<P(Q>                 omitting of premise (1)

               (8) (x(x ((<P>(<Q>)  (  x (<P(Q>)                  (x-adding (7)

I used here the definition [P(Q](x) ( P(x) ( Q(x).
The following theorem can be proved by the same way. 
TSET3. (<P>(<Q>) 
[image: image120.wmf]Z

=

 <P(Q>,

where [P(Q](x) ( P(x) ( Q(x).

10. Using of one special notation in Ontology

Put by the definition:

D(. (b(c) ( x ( x ( x ( (y(Mod(y,b,c,()( y ( x), where term “(b(c)” is read as “b-under-the-condition-c (with projector ()”.

Existential quantifier is enough here since Mod(z,b,c,f) ( Mod(y,b,c,f) ( (z = 1234 y) (see Theorem of one-valueness).

One need to check modality of corresponding property at the beginning. 

Theorem of modality of (-property. (b(c(f(t((y(Mod(y,b,c,f)( y ( x) ( x ( t  (  (y(Mod(y,b,c,f)( y ( t))

Proof. (1) (y(Mod(y,b,c,f)( y ( x) ( x ( t                                      premise

           (2) x ( t                                                                          (-omitting (1)

           (3) (y(Mod(y,b,c,f)( y ( x)                                           (-omitting (1)

           (4) Mod(y0,b,c,f)( y0 ( x                                               (y-omitting (3) 

           (5) y0 ( x                                                                        (-omitting (4)

           (6) y0 ( x ( x ( t                                                            (-adding (2), (5)

           (7) y0 ( x ( x ( t  (  y0 ( t                                   D(, Theorem of transitivity

           (8) y0 ( t                                                                       MP (6), (7)

           (9) Mod(y0,b,c,f)                                                            (-omitting (4)

         (10) Mod(y0,b,c,f) ( y0 ( t                                              (-adding (8), (9)

         (11) (y(Mod(y,b,c,f) ( y ( t)                                           (y-adding (10)

Therefore we can use definition D(.

Theorem of notation equivalence. a = b(c ( Mod(a,b,c,()

Proof. 1. (1) a = b(c                                                        premise

              (2) a = b(c  ( Modus(b(c)              Theorem of modality of equality*

              (3) Modus(b(c)                                                  MP (1), (2)

              (4) Modus(b(c) ( b(c ( b(c              Theorem of identical mode, D(1.      

              (5) b(c ( b(c                                                      MP (3), (4)

              (6) b(c ( b(c ( b(c ( b(c ( (y(Mod(y,b,c,() ( y ( b(c)    D(.

              (7) b(c ( b(c ( (y(Mod(y,b,c,() ( y ( b(c)      MP (5), (6)

              (8) (y(Mod(y,b,c,() ( y ( b(c)                           (-omitting (7) 

              (9) Mod(y0,b,c,() ( y0 ( b(c                              (y-omitting (8)

            (10) Mod(y0,b,c,()                                                 (-omitting (9)

            (11) Mod(y0,b,c,() ( y0 =1234 b(c                        consequence of (AO2)

            (12) y0 =1234 b(c  ( y0 = b(c               Theorem of equality consequence, 

                                                                         Theorem of relation of equalities**

            (13) y0 = b(c                                         consequence of (10), (11) and (12)                  

            (14) y0 = b(c ( a = b(c                                   (-adding (1), (13)

            (15) y0 = b(c ( a = b(c  ( y0 = a           Theorem of modus equivalence (iii)
            (16) y0 = a                                                                MP (13), (14)

            (17) y0 = a ( Mod(y0,b,c,()                                    (-adding (10), (16)

            (18) y0 = a ( Mod(y0,b,c,() ( Mod(a,b,c,()  Extensional theorem of substitution*             

            (19) Mod(a,b,c,()                                                    MP (17), (18)

        2. (1) Mod(a,b,c,()                                                       premise

            (2) Mod(a,b,c,() ( a =1234 b(c                           consequence of (AO2)

            (3) a =1234 b(c  (  a = b(c               Theorem of equality consequence, 

                                                                         Theorem of relation of equalities**

            (4) a = b(c                                            consequence of (1), (2) and (3)

Therefore we can use the formula a = b(c in all cases, where Mod(a,b,c,() is used, and vice versa. 

11. Logic of Existence in Ontology

In contradistinction to Lesniewski my definition of existense (DPEx) proposes that to exist is to be a positive (not null) mode. Taking into account Theorem of positive modus and mode equivalence we can assert that to exist is to be a positive modus, i.e., modus posessing a positive mode in a model. Such definition of existence is extremely general, it covers any kind of existence: mental, virtual, physical, psychological, etc. In general case a principle exists if some expression of the principle under some condition is done: for example, a perception of an object is perceived,  object takes place in space, activity of a man is expressed itself for him or another people, etc. All such cases can be interpreted as ones of generation of positive modes of principles in different regions of expression. 

Besides, the following theorem can be proved.

First theorem of existence. Ex(a) ( Moda(a,b)  (  Ex(b), i.e., if a exists and a is mode of b, then b exists.

Proof.            (1) Ex(a)                                                                   1st premise

                      (2) Moda(a,b)                                                          2nd premise

                      (3) Ex(a) ( PModa(a)                                               DPEx.

                      (4) PModa(a)                                                            MP (1), (3)

                      (5) PModa(a) ( Moda(a,b)  ( PModa(b)     Theorem of positive mode transfer

                      (6) PModa(a) ( Moda(a,b)                                (-adding (2), (4)

                      (7) PModa(b)                                                             MP (5), (6)

                      (8) PModa(b) ( Ex(b)                                                DPEx.

                      (9) Ex(b)                                                                     MP (7), (8)

Therefore relation between modus and mode and idea of existence are defined in a such manner that existence is carring over modus from mode, i.e., modus is more or equal to mode on the “force of being”. 

In particular, we can prove the following very important theorem on the basis of First theorem of existence.

Theorem of existence of maximum modus. (bEx(b) ( (a = 
[image: image121.wmf]m

1

) ( Ex(a), i.e., if something exists, then maximum modus exists.

Proof.        (1)  (bEx(b)                                                          1st premise

                 (2)  a = 
[image: image122.wmf]m

1

                                                            2nd premise

                 (3)  Ex(b0)                                                             (b-omitting (1)

                 (4)  a = 
[image: image123.wmf]m

1

 ( a ( a ( (b(Modus(b) ( a ( b)           DExtr1**

                 (5)  a ( a ( (b(Modus(b) ( a ( b)                          MP (2), (4)

                 (6)  (b(Modus(b) ( a ( b)                                       (-omitting (5)

                 (9)  Modus(b) ( a ( b                                              (b-omitting (8)

               (10)  Modus(b) ( a ( b                                              consequence of (9)

               (11)  Modus(b0) ( a ( b0                                           substitution of b0 for b in (10)

               (12)  Ex(b0) ( PModa(b0)                                        DPEx.

               (13)  PModa(b0)                                                       MP (3), (12)

               (14)  PModa(b0) ( Moda(b0)                                   consequence of DPMODA1       

               (15)  Moda(b0)                                                          MP (13), (14)

               (16)  Moda(b0) ( Modus(b0)                                    Theorem of modusness of mode

               (17)  Modus(b0)                                                        MP (15), (16)

               (17)  a ( b0                                                                 MP (11), (17)

               (18)  Ex(b0) ( Moda(b0,a)                                       (-adding (3), (17); D(1.

               (19)  Ex(b0) ( Moda(b0,a) ( Ex(a)                          First theorem of existence

               (20)  Ex(a)                                                                 MP (18), (19)

12. Boolean Algebra of moduses in Ontology

Algebraic definitions

DA1. (a ( b) ( x ( x ( x ( a ( a ( b ( b ( [(y(x (1 y ( (z(y (1 z ( (a ( z ( b ( z))) ( NModa(x)], where “(a ( b)” is read as “sum of moduses a and b”

DA2. (a ( b) ( x ( x ( x ( a ( a ( b ( b ( [(y(x (1 y ( (a ( y ( b ( y)) ( NModa(x)], where “(a ( b)” is read as “product of moduses a and b”

DA3. a( ( x ( x ( x ( a ( a  (  [(y(x (1 y ( ((a ( y)) ( NModa(x)], where “a(” is read as “exterior of modus a”

I would like to note that DA1 has obvious likeness with the concept of mereological class in Lesniewski’ “Mereology”. However Lesniewski needed a new predicate “to be a part” for the expression of mereological relations. Our version of Ontology includes idea of such relations in the primary predicate Mod. 

To provide modality of properties let us prove the following axioms.

Theorem of modality of “sum property”. (a(b(x(t(a ( a ( b ( b ( [(y(x (1 y ( (z(y (1 z ( (a ( z ( b ( z))) ( NModa(x)] ( x ( t   (   a ( a ( b ( b ( [(y(t (1 y ( (z(y (1 z ( (a ( z ( b ( z))) ( NModa(t))

Proof.  (1) a ( a ( b ( b ( [(y(x (1 y ( (z(y (1 z ( (a ( z ( b ( z))) ( NModa(x)]  1st premise

           (2) x ( t                                                                                                           2nd premise

    +1   (3) t (1 y                                                                                                          premise

           (4) x ( t ( t (1 y  ( x (1 y                                              D(, D(P, Theorem of transitivity

           (5) x ( t ( t (1 y                                                                                   (-adding (2), (3)

           (6) x (1 y                                                                                                     MP (4), (5)

           (7) x (1 y ( PModa(x)                                                                        D(P, DPMODA2, 

                                                                    Theorem of positive mode and modus equivalence

          (8) PModa(x)                                                                                                MP (6), (7)

          (9) (NModa(x)                                                     Theorem of modal incompatibility, (8)

        (10) (y(x (1 y ( (z(y (1 z ( (a ( z ( b ( z))) ( NModa(x)                      (-omitting (1)

        (11) (y(x (1 y ( (z(y (1 z ( (a ( z ( b ( z)))                             consequence of (9), (10)

        (12) x (1 y ( (z(y (1 z ( (a ( z ( b ( z))                                             (y-omitting (11)

        (13) (z(y (1 z ( (a ( z ( b ( z))                                                             MP (6), (12)

 -1   (14) t (1 y ( (z(y (1 z ( (a ( z ( b ( z))                                        omitting of premise (3)

       (15) (y(t (1 y ( (z(y (1 z ( (a ( z ( b ( z)))                                           (y-adding (14)

       (16) (y(t (1 y ( (z(y (1 z ( (a ( z ( b ( z))) ( NModa(t)                        (-adding (15)

       (17) a ( a ( b ( b                                                                                       (-omitting (1)

(18) a ( a ( b ( b ( [(y(t (1 y ( (z(y (1 z ( (a ( z ( b ( z))) ( NModa(t)]  (-adding (16), (17)

Theorem of modality of “product property”. (a(b(x(t(a ( a ( b ( b ( [(y(x (1 y ( (a ( y ( b ( y)) ( NModa(x)] ( x ( t   (   a ( a ( b ( b ( [(y(t (1 y ( (a ( y ( b ( y)) ( NModa(t)])

Proof.(1)a ( a ( b ( b ( [(y(x(1y ( (a(y(b(y)) ( NModa(x)]                   1st premise

            (2) x ( t                                                                                             2nd premise

    +1   (3) t (1 y                                                                                                premise

           (4) x ( t ( t (1 y  ( x (1 y                                              D(, D(P, Theorem of transitivity

           (5) x ( t ( t (1 y                                                                                   (-adding (2), (3)

           (6) x (1 y                                                                                                     MP (4), (5)

           (7) x (1 y ( PModa(x)                                                                        D(P, DPMODA2, 

                                                                    Theorem of positive mode and modus equivalence

          (8) PModa(x)                                                                                                MP (6), (7)

          (9) (NModa(x)                                                     Theorem of modal incompatibility, (8)

        (10) (y(x(1y ( (a(y(b(y)) ( NModa(x)                                                (-omitting (1)

        (11) (y(x(1y ( (a(y(b(y))                                                      consequence of (9), (10)

        (12) x(1y ( (a(y(b(y)                                                                      (y-omitting (11)

        (13) a(y ( b(y                                                                                     MP (6), (12)

   -1 (14) t (1 y ( (a(y ( b(y)                                                         omitting of premise (3)

        (15) (y(t (1 y ( (a(y ( b(y))                                                             (y-adding (14)

        (16) (y(t (1 y ( (a ( y ( b ( y)) ( NModa(t)                                      (-adding (15)

        (17) a ( a ( b ( b                                                                                (-omitting (1)

        (18) a ( a ( b ( b ( [(y(t (1 y ( (a ( y ( b ( y)) ( NModa(t)]        (-adding (16), (17)

Theorem of modality of “exterior property”. (a(x(t(a ( a  (  [(y(x (1 y ( ((a ( y)) ( NModa(x)] ( x ( t  (  a ( a  (  [(y(t (1 y ( ((a ( y)) ( NModa(t)])

Proof.  (1) a ( a  (  [(y(x (1 y ( ((a ( y)) ( NModa(x)]                               1st premise

            (2) x ( t                                                                                              2nd premise

    +1   (3) t (1 y                                                                                                premise

           (4) x ( t ( t (1 y  ( x (1 y                                              D(, D(P, Theorem of transitivity

           (5) x ( t ( t (1 y                                                                                   (-adding (2), (3)

           (6) x (1 y                                                                                                     MP (4), (5)

           (7) x (1 y ( PModa(x)                                                                        D(P, DPMODA2, 

                                                                    Theorem of positive mode and modus equivalence

          (8) PModa(x)                                                                                                MP (6), (7)

          (9) (NModa(x)                                                     Theorem of modal incompatibility, (8)

        (10) (y(x (1 y ( ((a ( y)) ( NModa(x)                                                 (-omitting (1)

        (11) (y(x (1 y ( ((a ( y))                                                    consequence of (9), (10)

        (12) x (1 y ( ((a ( y)                                                                     (y-omitting (11)

        (13) ((a ( y)                                                                                        MP (6), (12)

  -1  (14) t (1 y ( ((a ( y)                                                                    omitting of premise (3)

        (15) (y(t (1 y ( ((a ( y))                                                                 (y-adding (14)

        (16) (y(t (1 y ( ((a ( y)) ( NModa(t)                                               (-adding (15)

        (17) a ( a                                                                                            (-omitting (1)

        (18) a ( a  (  [(y(t (1 y ( ((a ( y)) ( NModa(t)]                           (-adding (16), (17)

Therefore one can conclude that appropriate properties are modal and definitions DA1-3 take place.

I shall accept also the following axioms in the proof of properties of the algebraic operations.

AN. (aNModa(a)  [Axiom of null mode presence]

AS. Moda(a) ( Moda(b) ( ((a ( b) ( (x(b (1 x ( (y(x (1 y ( ((a ( y))) [Axiom of separation] (title of the axiom means that if b is not a mode of a, then one can find a such positive mode x of b that this mode is fully separated from a, i.e. all positive modes of x are not modes of a).

Then we can prove the following theorems. 

Theorem of exterior. Modus(a) ( Modus(a(), i.e. if a is modus, then exterior of a is also modus.

Proof.    (1) Modus(a)                                                                                              premise

              (2) (bNModa(b)                                                                                        AN

              (3) NModa(b0)                                                                                       (b-omitting (2)

              (4) (y(b0 (1 y ( ((a ( y)) ( NModa(b0)                                                    (-adding (3)

              (5) NModa(b0) ( Moda(b0)                                                                       DNMODA

              (6) Moda(b0)                                                                                               MP (3), (5)

              (7) Moda(b0) ( b0 ( b0                                          Theorem of identical mode*, D(1.                                      

              (8) b0 ( b0                                                                                                           MP (6), (7)

              (9) Modus(a) ( a ( a                                               Theorem of identical mode, D(1.                                      

            (10) a ( a                                                                                                        MP (1), (9)

            (11) a ( a ( b0 ( b0 ( (y(b0 (1 y ( ((a ( y)) ( NModa(b0)           (-adding (4), (8), (10)

            (12) a ( a ( b0 ( b0 ( (y(b0 (1 y ( ((a ( y)) ( NModa(b0) ( a( ( b0             DA3.

            (13) a( ( b0                                                                                                     MP (11), (12)

            (14) a( ( b0 ( Modus(a()                                                                         Lemma 3, D(1.            

            (15) Modus(a()                                                                                           MP (13), (14)

By the same way we can prove the following two theorems.

Theorem of sum. Modus(a)(Modus(b) ( Modus(a(b), i.e., if a and b are moduses, then sum of a and b is also modus.

Theorem of product. Modus(a)(Modus(b) ( Modus(a(b), i.e., if a and b are moduses, then product of a and b is also modus.

Therefore operations of sum, product and formation of exterior are algebraically closed relatively moduses (or modes). 

I shall use Theorem of positive sufficiency below to prove a ( b. To prove this it is sufficient to prove that a ( x ( PModa(x) ( b ( x in accordance with the theorem.
Theorem of sum inclusion. Moda(a) ( Moda(b) ( [a ( a(b], i.e., if a and b are modes, then a is weakly included to sum of a and b.

Proof.   (i) Moda(a)                                                        1st   premise

            (ii) Moda(b)                                                        2nd premise

Let us show that (x(a ( x ( (a(b) ( x) under these conditions.

          (1) a (1 x                                                                     premise

          (2) a (1 x ( x (1 x                    Theorem of consequence of positive mode, D(P.

  +1    (3) x (1 y                                                                           premise

          (4) x (1 y ( y (1 y                                      substitution of x and y for a and x resp. in (2)

          (5) y (1 y                                                                        MP (1), (2)

           (6) a (1 x ( a ( x                                                  consequence of DPMODA2, D(1.                 

           (7) x (1 y ( x ( y                                      substitution of x and y for a and x resp. in (6)

           (8) a ( x                                                                            MP (1), (6)

           (9) x ( y                                                                            MP (3), (7)

         (10) a ( x ( x ( y                                                             (-adding (8), (9)

         (11) a ( x ( x ( y ( a ( y                                       Theorem of transitivity, D(1.

         (12) a ( y                                                                            MP (10), (11)

         (13) a ( y ( b ( y                                                              (-adding (12)

         (14) y (1 y ( (a ( y ( b ( y)                                              (-adding (5), (13)

         (15) {y (1 z ( (a ( z ( b ( z)}z[y]  presentation of (14) as result of substitution of y for z

         (16) (z(y (1 z ( (a ( z ( b ( z))                                      (z-adding (15)

  -1   (17) x (1 y ( (z(y (1 z ( (a ( z ( b ( z))                      omitting of premise (3)

         (18) (y(x (1 y ( (z(y (1 z ( (a ( z ( b ( z)))                  (y-adding (17)

         (19) (y(x (1 y ( (z(y (1 z ( (a ( z ( b ( z))) ( NModa(x)  (-adding (18)

         (20) Moda(a) ( a ( a                                    Theorem of identical mode*, D(1.

         (21) a ( a                                                                           MP (i), (20)

         (22) Moda(b) ( b ( b                                    Theorem of identical mode*, D(1.

         (23) b ( b                                                                           MP (ii), (22)

         (24) a ( a ( b ( b ( [(y(x (1 y ( (z(y (1 z ( (a ( z ( b ( z)))

                                                     ( NModa(x)]                     (-adding (21), (22) and (19)

         (25) a ( a ( b ( b ( [(y(x (1 y ( (z(y (1 z ( (a ( z ( b ( z)))

                                                     ( NModa(x)]  ( (a(b) ( x      DA1.

         (26) (a(b) ( x                                                                       MP (24), (25)

Theorem of idempotentness. Moda(a) ( [a(a = a], i.e., if a is mode, then sum of a and a equals a.

Proof.       (0) Moda(a)                                                                        premise

Let us show that (a(a) ( a under this condition.

         1. (x((a(a) ( x  ( a ( x) 

Assume the converse.

               (1) (a(a) ( x                                                                        1st premise

               (2) ((a ( x)                                                                            2nd premise

               (3) (a(a) ( x  ( Moda(x)                                                     Lemma 3, D(1.

               (4) Moda(x)                                                                          MP (1), (3)

               (5) Moda(a) ( ((a ( x)                                                          (-adding (0), (2)

               (6) (a(Moda(a) ( ((a ( x))                                                   (a-adding (5)

               (7) (a(Moda(a) ( ((a ( x)) ( (Moda(a)                                (-adding (6)

               (8) [(a(Moda(a) ( ((a ( x)) ( (Moda(a)] ( (NModa(x)          DNMODA

               (9)(NModa(x)                                                                         MP (7), (8)

               (10) (a(a) ( x  ( {a ( a ( x ( x 

         ( [(y(x (1 y ( (z(y (1 z ( (a ( z ( a ( z))) ( NModa(x)]}         DA1

               (11) a ( a ( x ( x 

         ( [(y(x (1 y ( (z(y (1 z ( (a ( z ( a ( z))) ( NModa(x)]         MP (1), (10)

               (12) (y(x (1 y ( (z(y (1 z ( (a ( z ( a ( z))) ( NModa(x)   (-omitting (11)

               (13) (y(x (1 y ( (z(y (1 z ( (a ( z ( a ( z)))            consequence of (9) and (12)            

               (14) (y(x (1 y ( (z(y (1 z ( (a ( z)))    equivalence of a ( z ( a ( z and a ( z for (13)              

               (15) Moda(a) ( Moda(x) ( ((a ( x) ( (y(x (1 y ( (z(y (1 z ( ((a ( z)))    AS

               (16) Moda(a) ( Moda(x) ( ((a ( x)                               (-adding (0), (4) and (2)

               (17) (y(x (1 y ( (z(y (1 z ( ((a ( z)))                                       MP (15), (16)

               (18) (y(x (1 y ( (z(y (1 z ( ((a ( z)))

                           ( ([(y(x (1 y ( (z(y (1 z ( (a ( z)))]            Theorem of functional calculus

               (19)([(y(x (1 y ( (z(y (1 z ( (a ( z)))]                                         MP (17), (18)

               (20)(y(x (1 y ( (z(y (1 z ( (a ( z)))

                                     (([(y(x (1 y ( (z(y (1 z ( (a ( z)))]                 (-adding (13), (19)

This contradiction proves 1.

            2. (x(a ( x  ( (a(a) ( x) – see Theorem of sum inclusion.
Therefore we have that Moda(a) ( [a(a ( a]. From here we receive Moda(a) ( Moda(a)([a(a ( a]. In accordance with First theorem of mode transfer, one can conclude that Moda(a(a). Hence we have Moda(a) ( Moda(a)(Moda(a(a)([a(a ( a], i.e., by Theorem of relation of equalities, Moda(a) ( [a(a = a]. 

Besides I shall prove three following aixiliary theorems. 

Auxiliary theorem for sum. a ( a ( b ( b ( PModa(x) ( ((a(b) ( x  (  (y(x (1 y ( (z(y (1 z ( (a ( z ( b ( z))))

Proof.  1. a ( a ( b ( b ( PModa(x) ( ((a(b) ( x  (  (y(x (1 y ( (z(y (1 z ( (a ( z ( b ( z)))) 

               (1) a ( a ( b ( b ( PModa(x)                                                1st premise

               (2) (a(b) ( x                                                                         2nd premise

               (3) (a(b) ( x  ( (y(x (1 y ( (z(y (1 z ( (a ( z ( b ( z)))     DA1

               (4) (y(x (1 y ( (z(y (1 z ( (a ( z ( b ( z)))                          MP (2), (3)

Therefore [a ( a ( b ( b ( PModa(x) ( (a(b) ( x]  (  (y(x (1 y ( (z(y (1 z ( (a ( z ( b ( z)))). Since A(B(C ( A((B(C), we receive 1.

           2. a ( a ( b ( b ( PModa(x) ( ((y(x (1 y ( (z(y (1 z ( (a ( z ( b ( z))) ( (a(b) ( x))

               (1) a ( a ( b ( b ( PModa(x)                                                  1st premise

               (2) (y(x (1 y ( (z(y (1 z ( (a ( z ( b ( z)))                           2nd premise

               (3) (y(x (1 y ( (z(y (1 z ( (a ( z ( b ( z))) ( NModa(x)      (-adding (2)

               (4) a ( a ( b ( b                                                                       (-omitting (1)

               (5) a ( a ( b ( b 

                    ( [(y(x (1 y ( (z(y (1 z ( (a ( z ( b ( z))) ( NModa(x)]  (-adding (3), (4)

               (6) a ( a ( b ( b 

                    ( [(y(x (1 y ( (z(y (1 z ( (a ( z ( b ( z))) ( NModa(x)] ( (a(b) ( x     DA1

               (7) (a(b) ( x                                                                                 MP (5), (6)

Therefore we receive 2. Taking into account that A((B(C), A((C(B) ( A((B(C), we have the final proof.

By the same way one can prove the rest auxiliary theorems.

Auxiliary theorem for product. a ( a ( b ( b ( PModa(x) ( ((a(b) ( x  (  (y(x (1 y ( (a ( y ( b ( y)))

Auxiliary theorem for exterior. a ( a ( PModa(x) ( (a( ( x  (  (y(x (1 y ( ((a ( y)))

Since a ( a ( b ( b entails f(a,b) ( f(a,b), where f(a,b) is operation a(b or a(b, then we can use auxiliary theorems also in the following form: a ( a ( b ( b ( PModa(x) ( (f(a,b) ( x  (  …). Similar condition is true for more complicated cases also. For example, we can write that a ( a ( b ( b ( c ( c ( PModa(x) ( ((a(c)((b(c) ( x  (  (y(x (1 y ( ((a(c) ( y ( (b(c) ( y))), etc.

Now we can start to prove basic theorems for Boolean algebra of moduses. Since proofs are rather long, I shall permit myself to write some separate steps of proof more shortly. In this case I shall indicate those foundations with the help of which the full deduction can be realized. Besides I shall not indicate especially those steps where ordinary rules of propositional or functional calculus are used. Such steps are denoting as “consequence of (i1),…, (im)”. 

First theorem of Boolean null. a ( a ( (a(
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0

= a)

Proof.  1. a ( a ( (a(
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0

( a)

       (1) a ( a                                                                                   1st premise

       (2) a(
[image: image126.wmf]m

0

( x                                                                            2nd premise

       (3) PModa(x)                                                                          3rd premise

             (4) a ( a ( PModa(x) ( (a(
[image: image127.wmf]m

0

( x  ( 

(y(x (1 y ( (z(y (1 z ( (a ( z ( 
[image: image128.wmf]m

0

( z))))  Auxiliary theorem for sum

       (5) a ( a ( PModa(x)                                                       (-adding (1), (3)

             (6) a(
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( x  ( (y(y (1 z ( (z(z (1 y ( (a ( z ( 
[image: image130.wmf]m

0

( z)))     MP (4), (5)

             (7) (y(x (1 y ( (z(y (1 z ( (a ( z ( 
[image: image131.wmf]m

0

( z)))            consequence of (2), (6)

             (8) x (1 y ( (z(y (1 z ( (a ( z ( 
[image: image132.wmf]m

0

( z))                                 (y-omitting (7)

       +1 (9) x (1 y                                                                                  premise

          (10) (z(y (1 z ( (a ( z ( 
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( z))                                                MP (8), (9)

          (11) y (1 z0 ( (a ( z0 ( 
[image: image134.wmf]m

0

( z0)                                                  (z-omitting (10)

          (12) a ( z0 ( 
[image: image135.wmf]m

0

( z0                                                                    (-omitting (11)

          (13) y (1 z0                                                                                  (-omitting (11)

          (14) y (1 z0 ( PModa(z0)                                                            DPMODA2, D(P.

          (15) PModa(z0)                                                                            MP (13), (14)

          (16) PModa(z0) ( (NModa(z0) ( Moda(z0)           Theorem of modal incompatibility

          (17) (NModa(z0) ( Moda(z0)                                             consequence of (15), (16)

          (18) (NModa(z0)                                                                          (-omitting (17)

     +2 (19) 
[image: image136.wmf]m

0

( z0                                                                                   premise

          (20) 
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0

( z0 ( NModa(z0)                                                             DExtr2

          (21) NModa(z0)                                                                             MP (19), (20)

          (22) NModa(z0) ( (NModa(z0)                                                     (-adding (18), (21)

     -2 (23) 
[image: image138.wmf]m

0

( z0 ( NModa(z0) ( (NModa(z0)                                 omitting of premise (19)

         (24) ((
[image: image139.wmf]m

0

( z0)                                                                                consequence of (23)

         (25) a ( z0                                                                                 consequence of (12), (24)

         (26) a ( z0 ( a ( z0                                                                         (-adding (25)

         (27) y (1 z0 ( (a ( z0 ( a ( z0)                                                        (-adding (13), (26)

         (28) (z(y (1 z ( (a ( z ( a ( z))                                                        (z-adding (27)

    -1 (29) x (1 y ( (z(y (1 z ( (a ( z ( a ( z))                                    omitting of premise (9)

         (30) (y(x (1 y ( (z(y (1 z ( (a ( z ( a ( z)))                                   (y-adding (29)

         (31) a ( a ( PModa(x) ( 

                   ((y(x (1 y ( (z(y (1 z ( (a ( z ( a ( z))) ( a(a ( x)  Auxiliary theorem for sum

         (32) (y(x (1 y ( (z(y (1 z ( (a ( z ( a ( z))) ( a(a ( x                MP (5), (31)

         (33) a(a ( x                                                                            consequence of (30), (32)             

         (34) (a(a) ( x  ( a ( x                                               Theorem of idempotentness, part1

         (35) a ( x                                                                                         MP (33), (34)

       2. a ( a ( (a ( a(
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) – see Theorem of sum inclusion.

Therefore we have that a ( a ( (a(
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( a) and a ( a ( (a ( a(
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), i.e., a ( a ( (a ( a(
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). Besides, a ( a ( Moda(a) ( (a ( a(
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) and, in accordance with First theorem of mode transfer, a ( a ( Moda(a) ( Moda(
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) ( (a ( a(
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), i.e., a ( a ( (a(
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= a) accordingly Theorem of relation of equalities.

Second theorem of Boolean null. a ( a ( (a(a( = 
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0

)

Proof. (1) a ( a                                                                                         1st premise

+1 (2) a(a( ( x                                                                                          premise

+2 (3) PModa(x)                                                                                       premise

     (4) a ( a ( PModa(x) ( 

                       ((a ( a() ( x  ( (y(x (1 y ( (a ( y ( a( ( y)))   Auxiliary theorem for product                 

      (5) a ( a ( PModa(x)                                                                       (-adding (1), (3)

      (6) (a ( a() ( x  ( (y(x (1 y ( (a ( y ( a( ( y))                                    MP (4), (5)

      (7) (y(x (1 y ( (a ( y ( a( ( y))                                                    consequence of (2), (6)

      (8) x (1 y ( (a ( y ( a( ( y)                                                              (y-omitting (7)

      (9) x (1 x ( (a ( x ( a( ( x)                                                        substitution of x for y in (8)

    (10) PModa(x) ( x (1 x               D(P., Theorem of positive modus and mode equivalence, 

                                                         Theorem of positive modus and identical mode equivalence                                                

    (11) x (1 x                                                                                                 MP (3), (10)

    (12) a ( x ( a( ( x                                                                                      MP (9), (11)

    (13) a ( x                                                                                                 (-omitting (12)

    (14) a( ( x                                                                                                (-omitting (12)

    (15) a ( a ( PModa(x) ( 

                       (a( ( x  ( (y(x (1 y ( ((a( ( y))                       Auxiliary theorem for exterior                 

    (16) a( ( x  ( (y(x (1 y ( ((a( ( y))                                                           MP (5), (15)

    (17) (y(x (1 y ( ((a( ( y))                                                   consequence of (14), (16)

    (18) x (1 y ( ((a( ( y)                                                               (y-omitting (17)

    (19) x (1 x ( ((a( ( x)                                                     substitution of x for y in (18)

    (20) ((a( ( x)                                                                                  MP (11), (19)

    (21) a( ( x ( ((a( ( x)                                                                   (-adding (14), (20)

-2 (22) PModa(x) ( A((A                                                      omitting of premise (3)

                                                                                                        [A is (14) here]

     (23) (PModa(x)                                                                     consequence of (22)

     (24) Modus(a) ( Modus(a(a()                                Theorems of exterior and product

     (25) a ( a ( Modus(a)                                                                     Lemma 3

     (26) Modus(a)                                                                                 MP (1), (25)

     (27) Modus(a(a()                                                                           MP (24), (26)

     (28) Modus(a(a() ( a(a( ( a(a(   Theorem of modus and identical mode equivalence, D(1.

     (29) a(a( ( a(a(                                                                              MP (27), (28)

     (30) a(a( ( x ( Moda(x)                                                                 Lemma 3

     (31) Moda(x)                                                                                   MP (2), (30)

     (32) (PModa(x) ( (Moda(x) ( NModa(x)                     consequence of Theorem of 

                                                                                                  mode incompatibility

     (33) (Moda(x) ( NModa(x)                                                             MP (23), (32)

     (34) NModa(x)                                                                 consequence of (31), (33)

-1 (35) a(a( ( x ( NModa(x)                                                omitting of premise (2)               

     (36) a(a( ( a(a( ( NModa(a(a()                           substitution of (a(a() for x in (35)

     (37) NModa(a(a()                                                                            MP (29), (36)

     (38) NModa(a(a() (  a(a( = 
[image: image149.wmf]m

0

                                        Theorem of mode zero

     (39) a(a( = 
[image: image150.wmf]m

0

                                                                  consequence of (37), (38)

Theorem of distributivity. a ( a ( b ( b ( c ( c ( ((a((b(c)) = ((a(b)((a(c))))

Proof.   1. a ( a ( b ( b ( c ( c ( ((a((b(c)) ( ((a(b)((a(c))))

      (1) a ( a ( b ( b ( c ( c                                                        1st premise

      (2) (a((b(c)) ( x                                                                 2nd premise

      (3) PModa(x)                                                                       3rd premise

      (4) a ( a ( b ( b ( c ( c ( PModa(x) ( ((a((b(c)) ( x  

            (  (y(x (1 y ( (a ( y ( (b(c) ( y)))                 Auxiliary theorem for product

      (5) a ( a ( b ( b ( c ( c ( PModa(x)                                    (-adding (1), (3)

      (6) (a((b(c)) ( x  

            (  (y(x (1 y ( (a ( y ( (b(c) ( y)))                            MP (4), (5)

      (7) (y(x (1 y ( (a ( y ( (b(c) ( y))                         consequence of (2) and (6)

      (8) x (1 y ( (a ( y ( (b(c) ( y)                                          (y-omitting (7)

+1  (9) x (1 y                                                                              premise

    (10) a ( y ( (b(c) ( y                                                            MP (8), (9)

    (11) (b(c) ( y                                                                        (-omitting (10)

    (12) x (1 y ( PModa(y)                                                         DPMODA2

    (13) PModa(y)                                                                       MP (9), (12)

    (14) b ( b ( c ( c                                                                   (-omitting (1)

    (15) b ( b ( c ( c ( PModa(y) ( (b(c) ( y                           (-adding (13), (14) and (11)

    (16) b ( b ( c ( c ( PModa(y) ( (b(c) ( y ( 

                       (z(y (1 z  ( (t(z (1 t ( (b(t ( c(t)))             Auxiliary theorem for sum                 

    (17) (z(y (1 z  ( (t(z (1 t ( (b(t ( c(t)))                              MP (15), (16)

    (18) y (1 z  ( (t(z (1 t ( (b(t ( c(t))                                     (z-omitting (17)

    (19) a ( y                                                                                (-omitting (10)

    (20) PModa(y) ( y (1 y                          Theorem of consequence of positive mode, D(P.

    (21) y (1 y                                                                               MP (13), (20)

    (22) y (1 y  ( (t(y (1 t ( (b(t ( c(t))                   substitution of y for z in (18)

    (23) (t(y (1 t ( (b(t ( c(t))                                                     MP (21), (22)

    (24) y (1 t0 ( (b(t0 ( c(t0)                                                       (t-omitting (23)

    (25) (b(t0 ( c(t0)                                                                     (-omitting (24)

    (26) y (1 t0                                                                                  (-omitting (24)

    (27) y (1 t0 ( y ( t0                                                                         DPMODA2

    (28) y ( t0                                                                                        MP (32), (34)

    (29) a ( y ( y ( t0                                                                   (-adding (19), (26)

    (30) a ( y ( y ( t0 ( a ( t0                                             Theorem of transitivity

    (31) a ( t0                                                                               MP (29), (30)

    (32) a ( t0 ( (b(t0 ( c(t0)                                                        (-adding (25), (31)

    (33) (a ( t0 ( b(t0) ( (a ( t0 ( c(t0)                                     consequence of (32)

+2(34) t0 (1 v                                                                                     premise

+3(35) a ( t0 ( b ( t0                                                                          premise

    (36) t0 (1 v ( t0 ( v                                                                        DPMODA2

    (37) t0 ( v                                                                                       MP (34), (36)

    (38) a ( t0                                                                                       (-omitting (35)    

    (39) a ( t0 ( t0 ( v                                                                       (-adding (37), (38)

    (40) a ( t0 ( t0 ( v ( a ( v                                                    Theorem of transitivity

    (41) a ( v                                                                                        MP (39), (40)

    (42) b ( t0                                                                                       (-omitting (35)    

    (43) b ( t0 ( t0 ( v                                                                           (-adding (37), (42)

    (44) b ( t0 ( t0 ( v ( b ( v                                                    Theorem of transitivity

    (45) b ( v                                                                                        MP (43), (44)

    (46) a ( v ( b ( v                                                                           (-adding (41), (45)

-3(47) a ( t0 ( b ( t0 ( a ( v ( b ( v                                             omitting of premise (35)

    By the same way we can show that                                             

    (48) a ( t0 ( c ( t0 ( a ( v ( c ( v

    (49) (a ( v ( b ( v) ( (a ( v ( c ( v)                               consequence of (33), (47) and (48)

-2(50) t0 (1 v ( ((a ( v ( b ( v) ( (a ( v ( c ( v))                         omitting of premise (34)

   (51) (t0 (1 v ( (a ( v ( b ( v)) ( (t0 (1 v ( (a ( v ( c ( v))            consequence of (50)

   (52) (t0 (1 v ( (a ( v ( b ( v)) 

                             ( (v(t0 (1 v ( (a ( v ( b ( v))           Theorem of functional calculus

   (53) (t0 (1 v ( (a ( v ( c ( v)) 

                             ( (v(t0 (1 v ( (a ( v ( c ( v))           Theorem of functional calculus

    (54) (v(t0 (1 v ( (a ( v ( b ( v)) (
                        ( (v(t0 (1 v ( (a ( v ( c ( v))   consequence of (51), (52) and (53)

    (55) a ( a ( b ( b ( PModa(t0) ( 

                   ((v(t0 (1 v ( (a ( v ( b ( v)) ( (a(b) ( t0)  Auxiliary theorem for product                                        

    (56) y (1 t0 ( PModa(t0)                                                            DPMODA2, D(P.

    (57) PModa(t0)                                                                          MP (26), (56)

    (58) a ( a ( b ( b                                                                       (-omitting (1)

    (59) a ( a ( b ( b ( PModa(t0)                                                  (-adding (57), (58)

    (60) (v(t0 (1 v ( (a ( v ( b ( v)) ( (a(b) ( t0                            MP (55), (59)

By the same way one can prove that

    (61) (v(t0 (1 v ( (a ( v ( c ( v)) ( (a(c) ( t0                          

    (62) (a(b) ( t0  ( (a(c) ( t0                                           consequence of (54), (60) and (61)

    (63) y (1 t0 ( ((a(b) ( t0  ( (a(c) ( t0)                                      (-adding (26), (62)

    (64) (t(y (1 t ( ((a(b) ( t  ( (a(c) ( t))                                   (t-adding (63)

-1(65) x (1 y ( (t(y (1 t ( ((a(b) ( t  ( (a(c) ( t))            omitting of premise (9)            

    (66) (y(x (1 y ( (t(y (1 t ( ((a(b) ( t  ( (a(c) ( t)))              (y-adding (65)

    (67) a ( a ( b ( b ( c ( c ( PModa(x) ( 

(y(x (1 y ( (t(y (1 t ( ((a(b) ( t  ( (a(c) ( t))) ( (a(b)((a(c) ( x) Auxiliary theorem for 

                                                                                                                                sum

    (68) a ( a ( b ( b ( c ( c ( PModa(x)                                        (-adding (1), (3)

    (69) (y(x (1 y ( (t(y (1 t ( ((a(b) ( t  ( (a(c) ( t))) ( (a(b)((a(c) ( x)    MP (67), (68)

    (70) (a(b)((a(c) ( x                                                                            MP (66), (69)

2. a ( a ( b ( b ( c ( c ( ((a(b)((a(c) ( a((b(c))

Assume the converse. 

      (1) a ( a ( b ( b ( c ( c                                                      1st premise

      (2) ((a(b)((a(c)) ( x                                                         2nd premise

      (3) ((a((b(c) ( x)                                                               3rd premise

      (4) a ( a                                                                                (-omitting (1)

      (5) a ( a ( Modus(a)                Theorem of modus and identical mode equivalence, D(1.

      (6) Modus(a)                                                                        MP (4), (5)                                          

By the same way one can prove that

      (7) Modus(b)  and

      (8) Modus(c)

      (9) Modus(b) ( Modus(c) ( Modus(b(c)                         Theorem of sum

    (10) Modus(b) ( Modus(c)                                                    (-adding (7), (8)

    (11) Modus(b(c)                                                                   MP (9), (10)

    (12) Modus(a) ( Modus(b(c) ( Modus(a((b(c))              Theorem of product

    (13) Modus(a) ( Modus(b(c)                                                (-adding (6), (11)

    (14) Modus(a((b(c))                                                            MP (12), (13)

    (15) NModa(x) ( Modus(a((b(c)) ( a((b(c) ( x    Theorem of null mode generality*

    (16) ((a((b(c) ( x) ( (NModa(x) ( (Modus(a((b(c))        consequence of (15)

    (17) (NModa(x) ( (Modus(a((b(c))                                    MP (3), (16)

    (18) (NModa(x)                                                              consequence of (14) and (17)        

    (19) ((a(b)((a(c)) ( x  ( Moda(x)                                       Lemma 3

    (20) Moda(x)                                                                            MP (2), (19)

    (21) Moda(x) ( (NModa(x)                                                     (-adding (18), (21)

    (22) (NModa(x) ( Moda(x) ( PModa(x)                    Theorem of modal incompatibility

    (23) PModa(x)                                                                          MP (21), (22)

    (24) a ( a ( b ( b ( c ( c ( PModa(x) ( (((a(b)((a(c)) ( x  ( (y(x (1 y ( (z(y (1 z ( ((a(b) ( z ( (a(c) ( z))))                                                            Auxiliary theorem for sum

    (25) a ( a ( b ( b ( c ( c ( PModa(x)                                        (-adding (1), (23)

    (26) ((a(b)((a(c)) ( x  

                  ( (y(x (1 y ( (z(y (1 z ( ((a(b) ( z ( (a(c) ( z)))      MP (24), (25)

    (27) (y(x (1 y ( (z(y (1 z ( ((a(b) ( z ( (a(c) ( z)))      consequence of (2) and (26)

    (28) x (1 y ( (z(y (1 z ( ((a(b) ( z ( (a(c) ( z))                       (y-omitting (27)

+1(29) x (1 y                                                                                     premise

    (30) (z(y (1 z ( ((a(b) ( z ( (a(c) ( z))                                      MP (28), (29)

    (31) y (1 z0 ( ((a(b) ( z0 ( (a(c) ( z0)                                        (z-omitting (30)

    (32) y (1 z0                                                                                    (-omitting (31)

    (33) y (1 z0 ( PModa(z0)                                                              DPMODA2, D(P.

    (34) PModa(z0)                                                                             MP (32), (33)

    (35) a ( a ( b ( b                                                                           (-omitting (1)

    (36) a ( a ( b ( b ( PModa(z0)                                                     (-adding (34), (35)

    (37) a ( a ( b ( b ( PModa(z0) ( 

                    ((a(b) ( z0  ( (t(z0 (1 t ( (a ( t ( b ( t)))     Auxiliary theorem for product

    (38) (a(b) ( z0  ( (t(z0 (1 t ( (a ( t ( b ( t))                            MP (36), (37)

+2(39) (a(b) ( z0                                                                              premise

    (40) (t(z0 (1 t ( (a ( t ( b ( t))                             consequence of (38) and (39)

    (41) z0 (1 t ( (a ( t ( b ( t)                                                            (t-omitting (40)

    (42) z0 (1 z0 ( (a ( z0 ( b ( z0)                             substitution of z0 for t in (41)

    (43) PModa(z0) ( z0 (1 z0                 Theorem of consequence of positive mode, D(P.

    (44) z0 (1 z0                                                                                     MP (34), (43)

    (45) a ( z0 ( b ( z0                                                                          MP (42), (44)

-2(46) (a(b) ( z0 ( a ( z0 ( b ( z0                                            omitting of premise (39)                 

By the same way one can prove that

    (47) (a(c) ( z0 ( a ( z0 ( c ( z0
    (48) (a(b) ( z0 ( (a(c) ( z0                                                           (-omitting (31)

    (49) (a ( z0 ( b ( z0) ( (a ( z0 ( c ( z0)                          consequence of (46), (47) and (48)

    (50) a ( z0 ( (b ( z0 ( c ( z0)                                                        consequence of (49)

    (51) y (1 z0 ( (a ( z0 ( (b ( z0 ( c ( z0))                                          (-adding (32), (50)

    (52) (z(y (1 z ( (a ( z ( (b ( z ( c ( z)))                                        (z-adding (51)

-1(53) x (1 y ( (z(y (1 z ( (a ( z ( (b ( z ( c ( z)))                    omitting of premise (29)

    (54) a ( a ( b ( b ( c ( c ( PModa(x) ( 

                  (a((b(c) ( x ( (y(x (1 y ( (a ( y ( (b(c) ( y)))   Auxiliary theorem for product

   (55) a ( a ( b ( b ( c ( c ( PModa(x)                                       (-adding (1), (23)

   (56) a((b(c) ( x ( (y(x (1 y ( (a ( y ( (b(c) ( y))                       MP (54), (55)

   (57) ((a((b(c) ( x) ( ((y(x (1 y ( (a ( y ( (b(c) ( y))              consequence of (56)

   (58) ((y(x (1 y ( (a ( y ( (b(c) ( y))                                     consequence of (3) and (57)

   (59) ((y(x (1 y ( (a ( y ( (b(c) ( y)) 

                           ( (y(x (1 y ( [((a ( y) ( (((b(c) ( y)])     Theorem of functional calculus

    (60) (y(x (1 y ( [((a ( y) ( (((b(c) ( y)])                                        MP (58), (59)

    (61) x (1 y0 ( [((a ( y0) ( (((b(c) ( y0)]                                         (y-omitting (60)

+3(62) ((a ( y0)                                                                                      premise

    (63) Moda(a) ( Moda(y0) ( ((a ( y0) ( 

                            (t(y0 (1 t ( (v(t (1 v ( ((a ( v)))                        Axiom of separation

    (64) a ( a ( Moda(a)                                                                   Lemma 3

    (65) Moda(a)                                                                                MP (4), (64)

    (66) x (1 y0                                                                                   (-omitting (61)

    (67) x (1 y0 ( Moda(y0)                                                           DPMODA2, Lemma 3, D(P.

    (68) Moda(y0)                                                                               MP (66), (67)

    (69) Moda(a) ( Moda(y0) ( ((a ( y0)                                  (-adding (62), (65) and (68)

    (70) (t(y0 (1 t ( (v(t (1 v ( ((a ( v)))                                           MP (63), (69)

    (71) y0 (1 t0 ( (v(t0 (1 v ( ((a ( v))                                              (t-omitting (70)

    (72) y0 (1 t0                                                                                    (-omitting (71)

    (73) x (1 y0 ( y0 (1 t0  ( x (1 t0                                   Theorem of positive transitivity, D(P
    (74) x (1 y0 ( y0 (1 t0                                                                     (-adding (66), (72) 

                                                                                    [note that (66) does not depend on (62)]

    (75) x (1 t0                                                                                     MP (73), (74)

    (76) (v(t0 (1 v ( ((a ( v))                                                              (-omitting (71)

    (77) x (1 t0 ( (v(t0 (1 v ( ((a ( v))                                                (-adding (75), (76)

+4(78) x (1 y                                                                                      premise

    (79) (z(y (1 z ( (a ( z ( (b ( z ( c ( z)))                                       MP (53), (78)

    (80) y (1 z0 ( (a ( z0 ( (b ( z0 ( c ( z0))                                        (z-omitting (79)

    (81) y (1 z0 ( a ( z0                                                                        (-omitting (80)

    (82) (z(y (1 z ( a ( z )                                                                   (z-adding (81)

-4(83) x (1 y ( (z(y (1 z ( a ( z )                                             omitting of premise (78)

    (84) (y(x (1 y ( (z(y (1 z ( a ( z ))                                              (y-adding (83)

    (85) (t(x (1 t ( (v(t (1 v ( ((a ( v)))                                             (t-adding (77)

    (86) (y(x (1 y ( (z(y (1 z ( ((a ( z)))                     renaming of bounded variables in (85)

    (87) (y(x (1 y ( (z(y (1 z ( ((a ( z))) ( 

                             ((y(x (1 y ( (z(y (1 z ( a ( z ))              Theorem of functional calculus

    (88) ((y(x (1 y ( (z(y (1 z ( a ( z ))                                              MP (86), (87)

    (89) (y(x (1 y ( (z(y (1 z ( a ( z )) ( ((y(x (1 y ( (z(y (1 z ( a ( z )) (-adding (84), (88)

-3(90) ((a ( y0) ( A((A                                             omitting of premise (62) [here A is (84)]

+5(91) (((b(c) ( y0)                                                                             premise

    (92) Moda(b(c) ( Moda(y0) ( (((b(c) ( y0) ( 

                            (t(y0 (1 t ( (v(t (1 v ( (((b(c) ( v)))                  Axiom of separation

    (93) Modus(b(c) ( Moda(b(c)                                        Theorem of modality of modus

    (94) Moda(b(c)                                                                            MP (11), (93)

    (95) Moda(b(c) ( Moda(y0) ( (((b(c) ( y0)                         (-adding (68), (91) and (94)

    (96) (t(y0 (1 t ( (v(t (1 v ( (((b(c) ( v)))                                   MP (92), (95)

    (97) y0 (1 t0 ( (v(t0 (1 v ( (((b(c) ( v))                                       (t-omitting (96)

    (98) (v(t0 (1 v ( (((b(c) ( v))                                                       (-omitting (97)

    (99) t0 (1 v ( (((b(c) ( v)                                                              (v-omitting (98)

+6(100) t0 (1 v                                                                                     premise

    (101) (((b(c) ( v)                                                                           MP (99), (100) 

    (102) b ( b ( c ( c (PModa(v) ( ((b(c) ( v ( 

                 (s(v (1 s ( (p(s (1 p ( (b ( p ( c ( p)))        Auxiliary theorem for sum

    (103) t0 (1 v ( PModa(v)                                             DPMODA2, D(P.

    (104) PModa(v)                                                            MP (100), (103)

    (105) b ( b ( c ( c                                                        (-omitting (1)

    (106) b ( b ( c ( c ( PModa(v)                                    (-adding (104), (105)

    (107) (b(c) ( v ( 

                 (s(v (1 s ( (p(s (1 p ( (b ( p ( c ( p)))          MP (102), (106)

    (108) ((b(c) ( v ( 

                 ((s(v (1 s ( (p(s (1 p ( (b ( p ( c ( p)))   consequence of (107)

    (109) ((s(v (1 s ( (p(s (1 p ( (b ( p ( c ( p)))       consequence of (101), (108)

    (110) ((s(v (1 s ( (p(s (1 p ( (b ( p ( c ( p))) 

            ( (s(v (1 s ( (p(s (1 p ( ((b ( p ( c ( p)))    Theorem of functional calculus

    (111) (s(v (1 s ( (p(s (1 p ( ((b ( p ( c ( p)))              MP (109), (110)

    (112) v (1 s0 ( (p(s0 (1 p ( ((b ( p ( c ( p))                  (s-omitting (111)

    (113) t0 (1 v ( v (1 s0 ( t0 (1 s0                     Theorem of positive transitivity, D(P

    (114) v (1 s0                                                                    (-omitting (112)

    (115) t0 (1 v ( v (1 s0                                                      (-adding (100), (114)

    (116) t0 (1 s0                                                                   MP (113), (115)

    (117) (p(s0 (1 p ( ((b ( p ( c ( p))                                (-omitting (112)

    (118) (p(s0 (1 p ( ((b ( p ( c ( p)) ( t0 (1 s0                 (-adding (116), (117)

-6(119) t0 (1 v ( (p(s0 (1 p ( ((b ( p ( c ( p)) ( t0 (1 s0    omitting of premise (100)

    (120) t0 (1 t0 ( (p(s0 (1 p ( ((b ( p ( c ( p)) ( t0 (1 s0   substitution of t0 for v in (119)

    (121) y0 (1 t0                                                                    (-omitting (97)

    (122) y0 (1 t0 ( t0 (1 t0               Theorem of consequence of positive mode, D(P.

    (123) t0 (1 t0                                                                     MP (121), (122)

    (124) (p(s0 (1 p ( ((b ( p ( c ( p)) ( t0 (1 s0                  MP (119), (123)

    (125) (p(s0 (1 p ( ((b ( p ( c ( p))                                 (-omitting (124)

    (126) t0 (1 s0                                                                     (-omitting (124)

    (127) x (1 y0 ( y0 (1 t0 ( t0 (1 s0 ( x (1 s0     Theorem of positive transitivity, D(P

    (128) x (1 y0 ( y0 (1 t0 ( t0 (1 s0                                       (-adding (66), (121), (126)

    (129) x (1 s0                                                                     MP (127), (128)

    (130) x (1 s0 ( (p(s0 (1 p ( ((b ( p ( c ( p))                   (-adding (125), (129)

    (131) (s(x (1 s ( (p(s (1 p ( ((b ( p ( c ( p)))               (s-adding (130)

+7(132) x (1 y                                                                                      premise

    (133) (z(y (1 z ( (a ( z ( (b ( z ( c ( z)))                                       MP (53), (132)

    (134) y (1 z0 ( (a ( z0 ( (b ( z0 ( c ( z0))                                        (z-omitting (133)

    (135) y (1 z0 ( (b ( z0 ( c ( z0)                                                         (-omitting (134)

    (136) (z(y (1 z ( (b ( z ( c ( z))                                                      (z-adding (135)

-7(137) x (1 y ( (z(y (1 z ( (b ( z ( c ( z))                               omitting of premise (132)

   (138) (y(x (1 y ( (z(y (1 z ( (b ( z ( c ( z)))                                  (y-adding (137)

   (139) (y(x (1 y ( (z(y (1 z ( ((b ( z ( c ( z)))        renaming of bounded variables in (131)

   (140) (y(x (1 y ( (z(y (1 z ( ((b ( z ( c ( z)))

                 ( ((y(x (1 y ( (z(y (1 z ( (b ( z ( c ( z)))       Theorem of functional calculus

   (141) ((y(x (1 y ( (z(y (1 z ( (b ( z ( c ( z)))                                MP (139), (140)

   (142) (y(x (1 y ( (z(y (1 z ( (b ( z ( c ( z))) ( 

                                  ((y(x (1 y ( (z(y (1 z ( (b ( z ( c ( z)))            (-adding (138), (141)

-5(143) (((b(c) ( y0) ( B((B                                                        omitting of premise (91) 

                                                                                                                  [here B is (138)]

   (144) ((a ( y0) ( (((b(c) ( y0)  ( C ( (C                       consequence of (90) and (143)

                                                                                                  [here C is (84) or (138)]   

   (145) ((a ( y0) ( (((b(c) ( y0)                                                            (-omitting (61)

   (146) C ( (C                                                                                       MP (144), (145)

This contradiction proves 2.
Therefore we have a ( a ( b ( b ( c ( c ( ((a((b(c)) ( ((a(b)((a(c)))) and a ( a ( b ( b ( c ( c ( ((a(b)((a(c) ( a((b(c)), i.e., a ( a ( b ( b ( c ( c ( ((a((b(c)) ( ((a(b)((a(c)))). Hence a ( a ( b ( b ( c ( c  (  a ( a ( b ( b ( c ( c ( ((a((b(c)) ( ((a(b)((a(c)))), i.e., a ( a ( b ( b ( c ( c  (  Modus(a((b(c)) ( Modus((a(b)((a(c)) ( ((a((b(c)) ( ((a(b)((a(c)))). From here, in accordance with Theorem of relation of equalities*, we finally receive a ( a ( b ( b ( c ( c  ( ((a((b(c)) = ((a(b)((a(c)))).

Therefore to prove a ( a ( b ( b ( c ( c ( (f(a,b,c) = g(a,b,c)) it is enough to prove that a ( a ( b ( b ( c ( c ( (f(a,b,c) ( g(a,b,c)). I shall use this condition further without special reserve.

Theorem of asociativity. a ( a ( b ( b ( c ( c ( (a((b(c) = (a(b)(c)

Proof.  1. a ( a ( b ( b ( c ( c ( (a((b(c) ( (a(b)(c)

            (1) a ( a ( b ( b ( c ( c                                                                  1st premise

            (2) (a((b(c)) ( x                                                                             2nd premise

            (3) PModa(x)                                                                                    3rd premise

            (4) a ( a ( b ( b ( c ( c ( PModa(x) ( 

              ((a((b(c)) ( x  ( (y(x (1 y ( (a ( y ( (b(c) ( y)))     Auxiliary theorem for product

            (5) a ( a ( b ( b ( c ( c ( PModa(x)                                                (-adding (1), (3)

            (6) (a((b(c)) ( x  ( (y(x (1 y ( (a ( y ( (b(c) ( y))                     MP (4), (5)

            (7) (y(x (1 y ( (a ( y ( (b(c) ( y))                                        consequence of (2), (6)                 

            (8) x (1 y ( (a ( y ( (b(c) ( y)                                                        (y-omitting (7)

      +1  (9) x (1 y                                                                                           premise

          (10) a ( y ( (b(c) ( y                                                                         MP (8), (9)

          (11) (b(c) ( y                                                                                     (-omitting (10)

          (12) x (1 y ( PModa(y)                                                                     D3.5, D(P
          (13) PModa(y)                                                                                   MP (9), (12)

          (14) b ( b ( c ( c ( PModa(y) ( 

                 ((b(c) ( y ( (z(y (1 z ( (b ( z ( c ( z)))                   Auxiliary theorem for product                                                      

          (15) b ( b ( c ( c                                                                                (-omitting (1)

          (16) b ( b ( c ( c ( PModa(y)                                                            (-adding (13), (15)

          (17) (b(c) ( y ( (z(y (1 z ( (b ( z ( c ( z))                                        MP (14), (16)

          (18) (z(y (1 z ( (b ( z ( c ( z))                                               consequence of (11), (17)               

          (19) y (1 z ( (b ( z ( c ( z)                                                           (z-omitting (18)

          (20) y (1 y ( (b ( y ( c ( y)                                             substitution of y for z in (19)

          (21) x (1 y ( y (1 y                              Theorem of consequence of positive mode, D(P.

          (22) y (1 y                                                                                      MP (9), (21)

          (23) b ( y ( c ( y                                                                           MP (20), (22)

          (24) b ( y                                                                                    (-omitting (23)

          (25) a ( y                                                                                    (-omitting (10)

          (26) a ( y ( b ( y                                                                        (-adding (24), (25)

     +2 (27) y (1 t                                                                                     premise

          (28) y (1 t ( y ( t                                                                           D(P., DPMODA2

          (29) y ( t                                                                                        MP (27), (28)

          (30) a ( y ( y ( t                                                                         (-adding (25), (29)   

          (31) a ( y ( y ( t ( a ( t                                                          Theorem of transitivity

          (32) a ( t                                                                                        MP (30), (31)

By the same way one can prove that

          (33) b ( t

          (34) a ( t ( b ( t                                                                           (-adding (32), (33)

     -2 (35) y (1 t  ( (a ( t ( b ( t)                                                       omitting of premise (27)

         (36) (t(y (1 t  ( (a ( t ( b ( t))                                                     (t-adding (35)

         (37) a ( a ( b ( b ( PModa(y) ( 

                 ((t(y (1 t ( (b ( t ( c ( t)) ( (a(b) ( y)                   Auxiliary theorem for product                   

         (38) a ( a ( b ( b                                                                            (-omitting (1)

         (39) a ( a ( b ( b ( PModa(y)                                                        (-adding (13), (38)

         (40) (t(y (1 t ( (b ( t ( c ( t)) ( (a(b) ( y                                    MP (37), (39)

         (41) (a(b) ( y                                                                         consequence of (36), (40)

         (42) c ( y                                                                                         (-omitting (23)

         (43) (a(b) ( y ( c ( y                                                                     (-adding (41), (42)

   -1  (44) x (1 y ( ((a(b) ( y ( c ( y)                                             omitting of premise (9)

         (45) (y(x (1 y ( ((a(b) ( y ( c ( y))                                             (y-adding (44)

         (46) a ( a ( b ( b ( c ( c ( PModa(x) ( 

              ((y(x (1 y ( ((a(b) ( y ( c ( y)) ( ((a(b)(c) ( x)     Auxiliary theorem for product

         (47) (y(x (1 y ( ((a(b) ( y ( c ( y)) ( (a(b)(c) ( x                   MP (5), (46)

         (48) (a(b)(c) ( x                                                                   consequence of (45), (47)

2. a ( a ( b ( b ( c ( c ( ((a(b)(c ( a((b(c)). The proof is anologous here.  

Theorem of duality. a ( a ( b ( b ( ((a(b)( = a( ( b()

Proof. 1. a ( a ( b ( b ( ((a(b)( ( a( ( b()

        (1) a ( a ( b ( b                                                                       1st premise

        (2) (a(b)( ( x                                                                            2nd premise

        (3) PModa(x)                                                                            3rd premise

        (4) a ( a ( b ( b ( PModa(x) ( 

                   ((a(b)( ( x  ( (y(x (1 y ( (((a(b) ( y)))           Auxiliary theorem for exterior

        (5) a ( a ( b ( b ( PModa(x)                                                   (-adding (1), (3)

       (6) (a(b)( ( x  ( (y(x (1 y ( (((a(b) ( y))                                  MP (4), (5)

       (7) (y(x (1 y ( (((a(b) ( y))                                            consequence of (2), (6)

       (8) x (1 y ( (((a(b) ( y)                                                           (y-omitting (7)

+1   (9) x (1 y                                                                                        premise

     (10) (((a(b) ( y)                                                                              MP (8), (9)

+2 (11) (s(y (1 s ( (a(b) ( s)                                                              premise

     (12) y (1 s0 ( (a(b) ( s0                                                                  (s-omitting (11)

     (13) y (1 s0                                                                                     (-omitting (12)

     (14) x (1 y ( y (1 s0  ( x (1 s0                                Theorem of positive transitivity, D(P

     (15) x (1 y ( y (1 s0                                                                       (-adding (9), (13)

     (16) x (1 s0                                                                                    MP (14), (15)

     (17) (a(b) ( s0                                                                               (-omitting (12)

     (18) x (1 s0 ( (a(b) ( s0                                                                (-adding (16), (17)

     (19) (s(x (1 s ( (a(b) ( s)                                                            (s-adding (18)

     (20) (s(x (1 s ( (a(b) ( s) ( ((s(x (1 s ( ((a(b) ( s)  Theorem of functional calculus

     (21) ((s(x (1 s ( ((a(b) ( s)                                                        MP (19), (20)

     (22) ((y(x (1 y ( ((a(b) ( y)                                   renaming of bounded variables in (21)

     (23) (y(x (1 y ( ((a(b) ( y) ( ((y(x (1 y ( ((a(b) ( y)            (-adding (7), (22)

-2  (24) (s(y (1 s ( (a(b) ( s) ( A((A                                         omitting of premise (11)

                                                                                                                [here A is (7)]

      (25) ((s(y (1 s ( (a(b) ( s)                                                          consequence of (24)

      (26) (s(y (1 s ( (((a(b) ( s))                                                       consequence of (25)

+3  (27) (s(y (1 s ( (a ( s ( b ( s))                                                                premise

      (28) y (1 s1 ( (a ( s1 ( b ( s1)                                                              (s-omitting (27)

+4  (29) s1 (1 z                                                                                                 premise

      (30) s1 (1 z ( s1 ( z                                                                                    DPMODA2, D(P.

      (31) s1 ( z                                                                                                   MP (29), (30)

      (32) a ( s1 ( b ( s1                                                                                (-omitting (28)

+5  (33) a ( s1                                                                                                 premise

      (34) a ( s1 ( s1 ( z ( a ( z                                                            Theorem of transitivity

      (35) a ( s1 ( s1 ( z                                                                                 (-adding (29), (33)

      (36) a ( z                                                                                                  MP (34), (35)

-5   (37) a ( s1 ( a ( z                                                                     omitting of premise (33)

By the same way we can prove that

      (38) b ( s1 ( b ( z

      (39) a ( z ( b ( z                                                          consequence of (32), (37), (38)

      (40) s1 (1 z ( z (1 z                       Theorem of consequence of positive mode, D(P.

      (41) z (1 z                                                                                      MP (29), (40)

      (42) z (1 z ( (a ( z ( b ( z)                                                            (-adding (39), (41)

      (43) {z (1 t ( (a ( t ( b ( t)}t[z]                            representation of (42) as the result of

                                                                                                     substitution of z for t

      (44) (t(z (1 t ( (a ( t ( b ( t))                                                        (t-adding (43)

-4   (45) s1 (1 z  ( (t(z (1 t ( (a ( t ( b ( t))                               omitting of premise (29)

       (46) (z(s1 (1 z  ( (t(z (1 t ( (a ( t ( b ( t)))                                (z-adding (45)

       (47) a ( a ( b ( b ( PModa(s1) ( 

    ((z(s1 (1 z  ( (t(z (1 t ( (a ( t ( b ( t))) ( (a(b) ( s1)         Auxiliary theorem for sum

       (48) y (1 s1                                                                                     (-omitting (28)

       (49) y (1 s1 ( PModa(s1)                                                               DPMODA2, D(P.

       (50) PModa(s1)                                                                               MP (48), (49)

       (51) a ( a ( b ( b ( PModa(s1)                                                       (-adding (1), (50)

       (52) (z(s1 (1 z  ( (t(z (1 t ( (a ( t ( b ( t))) ( (a(b) ( s1              MP (47), (51)

       (53) (a(b) ( s1                                                                        consequence of (46), (52)

       (54) y (1 s1 ( (a(b) ( s1                                                                 (-adding (48), (53)

       (55) (s(y (1 s ( (a(b) ( s)                                                             (s-adding (54)

       (56) ((s(y (1 s ( (((a(b) ( s))                                                  consequence of (55)

       (57) (s(y (1 s ( (((a(b) ( s)) ( ((s(y (1 s ( (((a(b) ( s))           (-adding (26), (56)

-3    (58) (s(y (1 s ( (a ( s ( b ( s)) ( B((B                                    omitting of premise (27)

       (59) ((s(y (1 s ( (a ( s ( b ( s))                                                    consequence of (58)

       (60) (s(y (1 s ( ((a ( s) ( ((b ( s))                                               consequence of (59)

       (61) y (1 s ( ((a ( s) ( ((b ( s)                                                        (s-omitting (60)

       (62) y (1 s ( ((a ( s)                                                                      consequence of (61)

       (63) (s(y (1 s ( ((a ( s))                                                                 (s-adding (62)

       (64) a ( a ( PModa(y) ( ((s(y (1 s ( ((a ( s)) ( a( ( y)  Auxiliary theorem for exterior

       (65) a ( a                                                                                         (-omitting (1)

       (66) x (1 y ( PModa(y)                                                                   DPMODA2, D(P.

       (67) PModa(y)                                                                                 MP (9), (66)

       (68) a ( a ( PModa(y)                                                                      (-adding (65), (67)

       (69) (s(y (1 s ( ((a ( s)) ( a( ( y                                                     MP (64), (68)

       (70) a( ( y                                                                                consequence of (63), (69)          

By the same way (see (61)-(70)) one can prove that

       (71) b( ( y

       (72) a( ( y ( b( ( y                                                                           (-adding (70), (71)

-1   (73) x (1 y ( (a( ( y ( b( ( y)                                                  omitting of premise (9)        

      (74) (y(x (1 y ( (a( ( y ( b( ( y))                                                     (y-adding (73)

      (75) a ( a ( b ( b ( PModa(x) ( 

                   ((y(x (1 y ( (((a(b) ( y)) ( (a( ( b() ( x)           Auxiliary theorem for exterior

      (76) (y(x (1 y ( (((a(b) ( y)) ( (a( ( b() ( x                                    MP (5), (75)

      (77) (a( ( b() ( x                                                                       consequence of (74), (76)

2. a ( a ( b ( b ( ((a( ( b() (  (a(b)()

      (1) a ( a ( b ( b                                                                                     1st premise

      (2) (a( ( b() ( x                                                                                      2nd premise

      (3) PModa(x)                                                                                         3rd premise

      (4) a ( a ( b ( b ( PModa(x) ( 

                       ((a( ( b() ( x  ( (y(x (1 y ( (a( ( y ( b( ( y)))   Auxiliary theorem for product                 

      (5) a ( a ( b ( b ( PModa(x)                                                                  (-adding (1), (3)

      (6) (a( ( b() ( x  ( (y(x (1 y ( (a( ( y ( b( ( y))                                    MP (4), (5)

      (7) (y(x (1 y ( (a( ( y ( b( ( y))                                                   consequence of (2), (6)

      (8) x (1 y ( (a( ( y ( b( ( y)                                                                    (y-omitting (7)

+1  (9) x (1 y                                                                                                     premise

    (10) a( ( y ( b( ( y                                                                                       MP (8), (9)

    (11) a( ( y                                                                                                    (-omitting (10)

    (12) x (1 y ( PModa(y)                                                                          DPMODA2, D(P.

    (13) PModa(y)                                                                                             MP (9), (12)

    (14) a ( a                                                                                                      (-omitting (1)

    (15) a ( a ( PModa(y)                                                                             (-adding (13), (14)

    (16) a ( a ( PModa(y) ( (a( ( y ( (z(y (1 z ( ((a ( z)))       Auxiliary theorem for exterior                     

    (17) a( ( y ( (z(y (1 z ( ((a ( z))                                                                MP (15), (16)

    (18) (z(y (1 z ( ((a ( z))                                                                consequence of (11), (17)             

    (19) y (1 z ( ((a ( z)                                                                                    (y-omitting (18)

By the same way (11)-(19) one can prove that 

    (20) y (1 z ( ((b ( z)

    (21) y (1 z ( ((a ( z) ( ((b ( z)                                                       consequence of (19), (20)

+2(22) y (1 t                                                                                                      premise

+3(23) t (1 z                                                                                                       premise

    (24) y (1 t ( t (1 z                                                                                     (-adding (22), (23)

    (25) y (1 t ( t (1 z ( y (1 z                                          Theorem of positive transitivity, D(P.

    (26) y (1 z                                                                                                      MP (24), (25)

    (27) ((a ( z) ( ((b ( z)                                                                                   MP (21), (26)

-3(28) t (1 z ( (((a ( z) ( ((b ( z))                                                    omitting of premise (23)

   (29) (z(t (1 z ( (((a ( z) ( ((b ( z)))                                                            (z-adding (28)

-2(30) y (1 t ( (z(t (1 z ( (((a ( z) ( ((b ( z)))                                 omitting of premise (22)

    (31) (t(y (1 t ( (z(t (1 z ( (((a ( z) ( ((b ( z))))                                        (t-adding (30)

    (32) x (1 y ( y (1 y                                   Theorem of consequence of positive mode, D(P.

    (33) y (1 y                                                                                                     MP (9), (32)

    (34) {y (1 t}t[y]                     representation of (32) as the result of substitution of y for t

    (35) (t(y (1 t)                                                                                                 (t-adding (34)

    (36) (t(y (1 t ( (z(t (1 z ( (((a ( z) ( ((b ( z)))                       consequence of (31) and (35)

    (37) ( (t(y (1 t ( (z(t (1 z ( (((a ( z) ( (b ( z)))                      consequence of (36)

    (38) a ( a ( b ( b ( PModa(y) ( 

          ((t(y (1 t ( (z(t (1 z ( (((a ( z) ( (b ( z))) ( (a ( b) ( y)  Auxiliary theorem for sum

    (39) a ( a ( b ( b ( PModa(y)                                                               (-adding (1), (13)

    (40) (t(y (1 t ( (z(t (1 z ( (((a ( z) ( (b ( z))) ( (a ( b) ( y               MP (38), (39)

    (41) ([(a ( b) ( y]                                                                     consequence of (37) and (40)

-1 (42) x (1 y ( ([(a ( b) ( y]                                                       omitting of premise (9)

    (43) (y(x (1 y ( ([(a ( b) ( y])                                                 (y-adding (42)

    (44) a ( a ( b ( b ( PModa(x) ( 

                       ((y(x (1 y ( ([(a ( b) ( y]) ( (a ( b)( ( x)  Auxiliary theorem for exterior

    (45) (y(x (1 y ( ([(a ( b) ( y]) ( (a ( b)( ( x                            MP (5), (44)

    (46) (a ( b)( ( x                                                                 consequence of (43), (45)          

Theorem of double exterior. a ( a ( ((a()( = a)

Proof.  1. a ( a ( ((a()( ( a)

           (1) a ( a                                                                             1st premise

           (2) (a()( ( x                                                                         2nd premise

           (3) PModa(x)                                                                     3rd premise

           (4) a ( a ( PModa(x) ( 

                        ((a()( ( x  ( (y(x (1 y ( ((a( ( y)))         Auxiliary theorem for exterior

          (5) a ( a ( PModa(x)                                                           (-adding (1), (3)

          (6) (a()( ( x  ( (y(x (1 y ( ((a( ( y))                                    MP (4), (5)

          (7) (y(x (1 y ( ((a( ( y))                                            consequence of (2), (6)                  

          (8) x (1 y ( ((a( ( y)                                                             (y-omitting (7)

          (9) x (1 x ( ((a( ( x)                                                  substitution of x for y in (8)                         

        (10) PModa(x) ( x (1 x                        Theorem of consequence of positive mode, D(P.

        (11) x (1 x                                                                                MP (3), (10)

        (12) ((a( ( x)                                                                             MP (9), (11)

        (13) a ( a ( PModa(x) ( (a( ( x  ( (y(x (1 y ( ((a ( y))) Auxiliary theorem for exterior

        (14) a( ( x  ( (y(x (1 y ( ((a ( y))                                            MP (5), (13)

        (15) ((y(x (1 y ( ((a ( y))                                              consequence of (12), (14)

        (16) (y(x (1 y ( (a ( y))                                                       consequence of (15)

+1    (17) (y(x (1 y ( (a( ( y))                                                           premise

        (18) ((y(x (1 y ( ((a( ( y))                                                  consequence of (17)

        (19) (y(x (1 y ( ((a( ( y)) ( ((y(x (1 y ( ((a( ( y))                (-adding (7), (18)

-1    (20) (y(x (1 y ( (a( ( y)) ( A((A                                     omitting of premise (17)

                                                                                                            [here A is (7)]

        (21) ((y(x (1 y ( (a( ( y))                                                       consequence of (20)

        (22) (y(x (1 y ( ((a( ( y))                                                      consequence of (21)

+2    (23) (y(x (1 y ( ((a ( y))                                                              premise

        (24) x (1 y0 ( ((a ( y0)                                                                (y-omitting (23)

        (25) ((a ( y0)                                                                               (-omitting (24)

  (26) Moda(a) ( Moda(y0) (((a ( y0) ( 

                           (z(y0 (1 z ((t(z (1 t ( ((a ( t)))         Axiom of separation, D(., D(P.

  (27) a ( a ( Moda(a)                                                                Lemma 3, D(.

  (28) Moda(a)                                                                              MP (1), (27)

  (29) x (1 y0                                                                                 (-omitting (24)

  (30) x (1 y0  ( Moda(y0)                                                     D(P., DPMODA2, Lemma 3

  (31) Moda(y0)                                                                             MP (29), (30)

  (32) Moda(a) ( Moda(y0) (((a ( y0)                                   (-adding (25), (28), (31)

  (33) (z(y0 (1 z ((t(z (1 t ( ((a ( t)))                                           MP (26), (32)

  (34) y0 (1 z0 ((t(z0 (1 t ( ((a ( t))                                               (z-omitting (33)

  (35) (t(z0 (1 t ( ((a ( t))                                                                (-omitting (34)

        (36) a ( a ( PModa(z0) ( 

                         ((t(z0 (1 t ( ((a ( t)) ( a( ( z0)                      Auxiliary theorem for exterior

        (37) y0 (1 z0                                                                                    (-omitting (34)

   (38) y0 (1 z0 ( PModa(z0)                                                         DPMODA2, D(P.

   (39) PModa(z0)                                                                         MP (37), (38)

   (40) a ( a ( PModa(z0)                                                          (-adding (1), (39)           

   (41) (t(z0 (1 t ( ((a ( t)) ( a( ( z0                                                  MP (36), (40)

   (42) a( ( z0                                                                       consequence of (35), (41)

   (43) x (1 y0 ( y0 (1 z0                                                            (-adding (29), (37)

   (44) x (1 y0 ( y0 (1 z0 ( x (1 z0                            Theorem of positive transitivity, D(P.

   (45) x (1 z0                                                                                 MP (43), (44)

   (46) x (1 z0 ( a( ( z0                                                              (-adding (42), (45)

   (47) (z(x (1 z ( a( ( z)                                                               (z-adding (46)

   (48) ((y(x (1 y ( ((a( ( y))                                                     consequence of (47)

   (49) (y(x (1 y ( ((a( ( y)) ( ((y(x (1 y ( ((a( ( y))            (-adding (22), (48)

-2(50) (y(x (1 y ( ((a ( y)) ( B((B                                     omitting of premise (23)

                                                                                                      [B is (22) here]

   (51) ((y(x (1 y ( ((a ( y))                                                      consequence of (50)

   (52) (y(x (1 y ( (a ( y))                                                        consequence of (51)

   (53) x (1 y ( (a ( y)                                                                 (y-omitting (52)

   (54) x (1 x ( (a ( x)                                                       substitution of x for y in (53)

   (55) a ( x                                                                                    MP (11), (54)

2. a ( a ( (a ( (a()()

    (1) a ( a                                                                                        1st premise

    (2) a ( x                                                                                        2nd premise

    (3) PModa(x)                                                                               3rd premise

+1(4) x (1 y                                                                                      premise

    (5) x (1 y ( y (1 y                                    Theorem of consequence of positive mode, D(P.

    (6) y (1 y                                                                                       MP (4), (5)

    (7) {y (1 z}z[y]                          representation of (6) as the result of substitution of y for z

    (8) (z(y (1 z)                                                                                 (z-adding (7)

    (9) y (1 z0                                                                                       (z-omitting (8)

  (10) y (1 z0 ( y ( z0                                                                      D(P., D(., DPMODA2

  (11) y ( z0                                                                                        MP (9), (10)

  (12) x (1 y   ( x ( y                                                                       D(P., D(., DPMODA2

  (13) x ( y                                                                                          MP (4), (12)

  (14) a ( x ( x ( y (  y ( z0  ( a ( z0                                       Theorem of transitivity                        

  (15) a ( x ( x ( y (  y ( z0                                                        (-adding (2), (11), (13)

  (16) a ( z0                                                                                         MP (14), (15)

  (17) y (1 z0 ( a ( z0                                                                          (-adding (9), (16)

  (18) (z(y (1 z ( a ( z)                                                                       (z-adding (17)

  (19) a ( a ( PModa(y) ( ((z(y (1 z ( ((a ( z)) ( a( ( y)     Auxiliary theorem for exterior

  (20) x (1 y ( PModa(y)                                                                        D3.5, D(P.

  (21) PModa(y)                                                                                     MP (4), (20)

  (22) a ( a ( PModa(y)                                                                       (-adding (1), (21)

  (23) (z(y (1 z ( ((a ( z)) ( a( ( y                                                       MP (19), (22)

  (24) ((z(y (1 z ( ((a ( z)) ( ((a( ( y)                                           consequence of (23)

  (25) (z(y (1 z ( a ( z) ( ((a( ( y)                                                  consequence of (24)

  (26) ((a( ( y)                                                                                 consequence of (18), (25)

-1(27) x (1 y ( ((a( ( y)                                                                    omitting of premise (4)

  (28) (y(x (1 y ( ((a( ( y))                                                                  (y-adding (27)

   (29) a ( a ( PModa(x) ( 

                      ((y(x (1 y ( ((a( ( y)) ( (a()( ( x)               Auxiliary theorem for exterior

   (30) a ( a ( PModa(x)                                                              (-adding (1), (3)

   (31) (y(x (1 y ( ((a( ( y)) ( (a()( ( x                                         MP (29), (30)

   (32) (a()( ( x                                                              consequence of (28), (31)
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Theorem of exterior transfer. a = b ( a( = b(
Proof.  (1) a = b                                                            premise

       +1(2) ((a( = b()                                                      premise

           (3) a = b ( (x(a ( x ( b ( x)           Theorem of relation of equalities, DE21, D(.

           (4) (x(a ( x ( b ( x)                                          MP (1), (3)

           (5) a ( x ( b ( x                                                (x-omitting (4)

           (6) ((a( = b() ( 

   (x(a( ( x ( ((b( ( x)) ( (x(b( ( x ( ((a( ( x))  Theorem of relation of equalities, DE21, D(.

           (7) (x(a( ( x ( ((b( ( x)) ( (x(b( ( x ( ((a( ( x))  MP (2), (6)

      +2 (8) (x(a( ( x ( ((b( ( x))                                    premise

           (9) a( ( x0 ( ((b( ( x0)                                        (x-omitting (8)

         (10) ((b( ( x0)                                                       (-omitting (9)

         (11) a( ( x0                                                           (-omitting (9)

         (12) a( ( x0 ( ((b( ( x0) ( PModa(x0)           Lemma 3, AN, DPMODA1

         (13) PModa(x0)                                                   MP (9), (12)

         (14) a = b ( b ( b                           Theorem of modality of equality*, 

                                              Theorem of modus and identical mode equivalence, D(.

        (15) b ( b                                                               MP (1), (14)

        (16) b ( b ( PModa(x0) ( 

                (b( ( x0  ( (y(x0 (1 y ( ((b ( y)))              Auxiliary theorem for exterior

        (17) b ( b ( PModa(x0)                                          (-adding (13), (15)

        (18) b( ( x0  ( (y(x0 (1 y ( ((b ( y))                      MP (16), (17)

        (19) ((b( ( x0) ( (y(x0 (1 y ( b ( y)          consequence of (18)

        (20) (y(x0 (1 y ( b ( y)                              consequence of (19), (10)

        (21) x0 (1 y0 ( b ( y0                                              (-omitting (20)

        (22) x0 (1 y0                                                            (-omitting (21)

        (23) a( ( x0 ( PModa(x0)                                        (-adding (11), (13)

        (24) a( ( x0 ( PModa(x0) ( a( (1 x0                        DPMODA2, D(., D(P.

        (25) a( (1 x0                                                             MP (23), (24)

        (26) a( (1 x0 ( x0 (1 y0                                              (-adding (11), (22)

        (27) a( (1 x0 ( x0 (1 y0 ( a( (1 y0      Theorem of positive transitivity, D(.

        (28) a( (1 y0                                                              MP (26), (27)

        (29) a ( y0 ( b ( y0                                  substitution of y0 for x in (5)

        (30) b ( y0                                                                 (-omitting (21)

        (31) a ( y0                                                   consequence of (29), (30)            

        (32) a ( y0 ( a ( a                                                D(1., Lemma 3,  

                                                       Theorem of modus and identical mode equivalence                    

        (33) a ( a                                                               MP (31), (32)

        (34) a ( a ( PModa(y0) ( 

                    (a( ( y0  ( (z(y0 (1 z ( ((a ( z)))       Auxiliary theorem for exterior

        (35) a( (1 y0 ( PModa(y0)                                     D(P., DPMODA2

        (36) PModa(y0)                                                      MP (28), (35)

        (37) a ( a ( PModa(y0)                                          (-adding (33), (36)

        (38) a( ( y0  ( (z(y0 (1 z ( ((a ( z))                       MP (34), (37)

        (39) (z(y0 (1 z ( ((a ( z))                             consequence of (28), (38)

        (40) y0 (1 z ( ((a ( z)                                             (z-omitting (39)

        (41) y0 (1 y0 ( ((a ( y0)                                substitution of y0 for z in (40)

        (42) a( (1 y0 ( y0 (1 y0                Theorem of consequence of positive mode, D(P.

        (43) y0 (1 y0                                                             MP (28), (42)

        (44) ((a ( y0)                                                            MP (41), (43)

        (45) a ( y0 ( ((a ( y0)                                              (-adding (31), (44)

  -2   (46) (x(a( ( x ( ((b( ( x)) ( A((A                    omitting of premise (8)

                                                                                            [A is (31) here]

By the same way ((8)-(46)) one can prove that

        (47) (x(b( ( x ( ((a( ( x)) ( B((B

        (48) (x(a( ( x ( ((b( ( x)) ( (x(b( ( x ( ((a( ( x)) ( A((A consequence of (46), (48)

        (49) A((A                                                                    MP (7), (48)

  -1   (50) ((a( = b() ( A((A                                       omitting of premise (2)

         (51) a( = b(                                                            consequence of (50)

Theorem of Boolean algebra on moduses. Operations (, ( and ( form Boolean algebra on moduses.

Proof. To prove the theorem it is sufficient to show that the following relations are realized.

      If a, b and c are moduses, then

1. a ( b = b ( a

2. (a ( b) ( c = a ( (b ( c)

3. a ( (b ( c) = (a(b) ( (a(c)

4. (a ( b)( = (a() ( (b()

5. a ( a = a

6. (a ( a() ( b = b

7. (a()( = a

It is clear that if a, b, c are moduses, then a ( a, b ( b and c ( c. Hence we can use theorems proved above. Relation 1 is obvious. Equality 2 is deduced from Theorem of associativity, Theorem of exterior transfer, Theorem of double exterior and Theorem of duality. Equality 3 is deduced from Theorem of distributivity, Theorem of exterior transfer, Theorem of double exterior and Theorem of duality. 4 is Theorem of duality. 5 is Theorem of idempotentness. 7 is Theorem of double exterior. Let us prove 6.
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( b = b) ( x = b      Theorem of modus equivalence (iii)
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( b = b)                                      (-adding (5), (6)

    (9) x = b                                                                          MP (7), (8)

-1(10) [x = (a ( a() ( b]  ( (x = b)                            omitting of premise (3)

    (11) (a ( a() ( b = (a ( a() ( b  ( 

                                ((a ( a() ( b = b)                 substitution of (a ( a() ( b for x in (10)

    (12) (a ( a() ( b = (a ( a() ( b                          Theorem of modus equivalence (i)

    (13) (a ( a() ( b = b                                                         MP (11), (12)

Therefore all the theorems of Boolean algebra take place for moduses in accordance with the theorem. Boolean algebra on moduses is one with Boolean null 
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 (see Second theorem of Boolean null) and Boolean unity 
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1

 (see Theorem of  Boolean unity). 

Concepts of sum and product of moduses can be generalized. 

DA1*. (b ( x ( x ( x ( Set(b) ( [(y(x (1 y ( (z(t(y (1 z ( t ( b ( t ( z) ( NModa(x))], where “(b” is read as “sum of moduses from set b”.

DA2*. (b ( x ( x ( x ( Set(b) ( [(y(x (1 y ( (z(z ( b ( z ( y) ( NModa(x))], where “(b” is read as “product of moduses from set b”.

13. St.Lesniewski’s approach and Ontology

Lesniewski’s version of Ontology is semiotic, i.e., it describes reality of signs (names) and their designates. Therefore to express Lesniewski’s “calculus of names” I shall use a predicate Nom(a,b,c,f) which denotes that “a is nomen of designate c with content b and mapping f”. Therefore, if Nom(a,b,c,f), then I shall denote a as nomen to distinguish this case from simply nominal constants and variables in Ontology. Functor f is one of the type (N,N)/N, and this functor takes designate c and content b to nomen a. One of the important point is such that content b of nomen a is a mode of designate c. Moreover I shall propose that if b is content of nomen a, then a is nomen of designate c iff b is a mode of c. I shall express this connection between two predicates Nom and Mod in a special axiom – Axiom of Name. Therefore content b of nomen a is mode, aspect of being, of designate c. For example, content of name “man” is an aspect of being of real people such that this aspect is being of real man, e.g. Socrates, as a man in general, as manhood. Content of name “red” is an aspect of a thing, in the framework of which the thing is red. And it is only one aspect of thing since there are many other aspects of thing, e.g. “to be hard”, “to be round”, etc. I express diversity of such aspects of thing as diversity of modes of thing. Therefore name a denotes object c and has content b. It is interesting that proper name can be defined in this case as a name, content of which is the designate, i.e., content of proper name is not one of the aspects of object but object as a whole. Finally I accept that structure of Lesniewski’s world consists of objects, i.e., really existing things. Every object is a locally universal and positive modus. This assumption expresses the idea of Lesniewski’s nominalism. 

Like with the case of predicate Mod, one can construct a number of derivative definitions relatively predicate Nom.

Definitions of coordination

LD123. Nom123(a,b,c) : Nom(a,b,c) ( (fNom(a,b,c,f), where “Nom(a,b,c)” is read as “a is nomen of designate c with content b”

LD13. Nom13(a,c) : Nomen1(a,c) ( (b(fNom(a,b,c,f), where “Nomen1(a,c)” is read as “a is nomen of designate c”

LD12. Nom12(a,b) : Nomen2(a,b) ( (c(fNom(a,b,c,f), where “Nomen2(a,b)” is read as “a is nomen with content b”

LD1. Nom1(a) :  Nomen(a) ( (b(c(fNom(a,b,c,f), where “Nomen(a)” is read as “a is nomen”

LD2. Nom2(b) :  Con(b) ( (a(c(fNom(a,b,c,f), where “Con(b)” is read as “b is content”

LD3. Nom3(c) :  Des(c) ( (a(b(fNom(a,b,c,f), where “Des(c)” is read as “c is designate”

LD4. Nom4(f) : Nominator(f) ( (a(b(cNom(a,b,c,f), where “Nominator(f)” is read as “f is nominator”

Definitions of equivalence and order

LDE13. a (eN b ( (x(Nomen1(a,x) ( Nomen1(b,x)), where “a (eN b” is read as “a and b are weakly and extensionally equal as nomens”

LDSE13. a =eN b ( (x(Nomen1(a,x) ( Nomen1(b,x)) ( Nomen(a) ( Nomen(b), where “a =eN b” is read as “a and b are extensionally equal as nomens”

LDE31. a (eD b ( (x(Nomen1(x,a) ( Nomen1(x,b)), where “a (eD b” is read as “a and b are weakly and extensionally equal as designates”

LSDE31. a =eD b ( (x(Nomen1(x,a) ( Nomen1(x,b)) ( Des(a) ( Des(b), where “a =eD b” is read as “a and b are extensionally equal as designates”

LDI13. a (eN b ( (x(Nomen1(a,x) ( Nomen1(b,x)), where “a (eN b” is read as “a extensionally entails b as nomen”

LDI31. a (eD b ( (x(Nomen1(x,a) ( Nomen1(x,b)), where “a (eD b” is read as “a extensionally entails b as designate”

LDE12. a (iN b ( (x(Nomen2(a,x) ( Nomen2(b,x)), where “a (iN b” is read as “a and b are weakly and intensionally equal as nomens”

LDSE12. a =iN b ( (x(Nomen2(a,x) ( Nomen2(b,x)) ( Nomen(a) ( Nomen(b), where “a =iN b” is read as “a and b are intensionally equal as nomens”

LDE21. a (iD b ( (x(Nomen2(x,a) ( Nomen2(x,b)), where “a (iD b” is read as “a and b are weakly and intensionally equal as designates”

LDSE21. a =iD b ( (x(Nomen2(x,a) ( Nomen2(x,b)) ( Des(a) ( Des(b), where “a =iD b” is read as “a and b are intensionally equal as designates”

LDI12. a (iN b ( (x(Nomen2(a,x) ( Nomen2(b,x)), where “a (iN b” is read as “a intensionally entails b as nomen”

LDI21. a (iD b ( (x(Nomen2(x,a) ( Nomen2(x,b)), where “a (iD b” is read as “a intensionally entails b as designate”

LD3. Valency definitions

LDV.1. ePNomen(a) ( (b(Nomen1(a,b) ( PModa(b))(Nomen(a), here “ePNomen(a)” is read as “a is extensionally positive nomen”

LDV.2. iPNomen(a) ( (b(Nomen2(a,b) ( PModa(b))(Nomen(a), where “iPNomen(a)” is read as “a is intensionally positive nomen”

LDV.3. eSing(a) ( Nomen(a) ( (x(y(Nomen1(a,x)(Nomen1(a,y) ( x=y), where “eSing(a)” is read as “a is extensionally singular nomen”

LDV.4. eGen(a) ( (b(c(Nomen1(a,b)( Nomen1(a,c)(((b=c)), where “eGen(a)” is read as “a is extensionally general nomen”

LDV.5. eNull(a) ( ((bNomen1(a,b), where “eNull(a)” is read as “a is extensionally null nomen”

LDV.6. iSing(a) ( Nomen(a) ( (x(y(Nomen2(a,x)( Nomen2(a,y) ( x=y), where “iSing(a)” is read as “a is intensionally singular nomen”

LDV.7. iGen(a) ( (b(c(Nomen2(a,b)( Nomen2(a,c)(((b=c)), where “iGen(a)” is read as “a is intensionally general nomen”

LDV.8. iNull(a) ( ((bNomen2(a,b), where “eNull(a)” is read as “a is extensionally null nomen”

LDV.9. PrNomen(a,b) ( Nomen(a) ( (c(Nom(a,c,b) ( b=c), where “PrNomen(a,b)” is read as “a is proper nomen of b”

I accept a predicate Ob of the type N/S, where Ob(a) is “a is object”, or “a is a really existing thing”. 

LDV.10. ObNomen(a) ( Nomen(a) ( (x(Nomen1(a,x) ( Ob(x)), where “ObNomen(a)” is read as “a is object nomen”

LDI. a (i b ( a ( b ( (((b ( a) ( ((Ob(b))), where “a (i b” is read as “b is intensional mode of a”

To express Lesniewski’s approach I shall use the following axioms:

LA1. Nomen2(a,b) ( (Nom(a,b,c) ( c (i b) [Axiom of Name]. This axiom unites Mod and Nom predicates. It entails that content b is an intensional mode for designate c.

LA2. Nom(a,b,c,f) ( (f(b,c) =eN a) ( (f(b,c) =iN a) ( (aNom(a,b,c,f) [Axiom of Nominator]

LA3. Nomen(a) ( iSing(a) [Axiom of intensional singularity], i.e., I shall propose that Lesniewski accepts only intensionally singular names, or names with one content. This entails that variety of names connects with extensional characteristics of names only.

LA4. Ob(a) ( UModus(a) ( PModa(a) [Axiom of object]. 

LA5. Des(a) ( (bNom(b,a,a) [Axiom of proper name]

LA6. Modus(a) ( Model(a) [Axiom of modelity of modus]

I shall denote S.Lesniewski’s functor “(” as “(L”. I accept the following definition here:

DL(. a (L b ( eSing(a) ( ObNomen(b) ( (a (eN b)

This is just the sense which Lesniewski proposed for functor “(L”: a is an extensionally singular name, b is an object name, and a extensionally entails b.

There are two sides of the characteristic of Lesniewski’s functor. These are intensional and extensional sides. First connects with the content parameters, the latter with designate parameters of names. To express these two planes I shall use the following definitions:

If  b is nomen and a is content, i.e., Nomen(b) and Con(a) are true, then

DLIn. a = con(b) ( Nomen2(b,a)

I accept definition DLIn for intensionally singular nomens only. 

In general case I shall use primary definitions b=f(a) ( P(a,b) only in the case when (bP(a,b) and (aP(a,b) are true and the condition of singularity, (x(y(P(a,x)(P(a,y) ( x=y), is carried out. This condition is provided by LA3 for predicate Nomen2(x,y).

If  b is an extensionally singular nomen and a is a modus, i.e., eSing(b) and Modus(a) are true, then

DLEx1. a = des(b) ( Nomen1(b,a)

If a is nomen, i.e., Nomen(a), then the following definition takes place:

DLEx2.1. ex(a) ( x  ( NModa(x)

DLEx2.2. ex(a) (* x  (  Model(x)  ( Nomen1(a,x)

I shall denote con(b), des(b) and ex(a) as “content of b”, “designate of b” and “extensional of a” accordingly. 

DLEx3. ObSet(a) ( (x(x ( a) ( (x(x ( a ( Ob(x)), where “ObSet(a)” is read as “a is object set”, or “a is set of objects”

Now I shall prove some auxiliary theorems for content (intensional) definition of L-functor (L. I shall accept axiom AN here.

First theorem of name modality. Nom(a,b,c) ( c (i b

Proof. (1) Nom(a,b,c)                                                                         premise

           (2) Nom(a,b,c) ( Nomen2(a,b)                                             LD12., LD123.

           (3) Nomen2(a,b)                                                                      MP (1), (2)

           (4) Nomen2(a,b) ( (Nom(a,b,c) ( c (i b)                                    LA1

           (5) Nom(a,b,c) ( c (i b                                                            MP (3), (4)

           (6) c (i b                                                                            consequence of (1), (5)

Second theorem of name modality. Nom(a,b,c) ( c ( b

Proof. (1) Nom(a,b,c)                                                                         premise

           (2) Nom(a,b,c) ( c (i b                                     First theorem of name modality               

           (3) c (i b                                                                                     MP (1), (2)

           (4) c (i b ( c ( b                                                                           LDI

           (5) c ( b                                                                                      MP (3), (4)  

Theorem of non-object. NModa(a) ( (Ob(a)

Proof.   (1) NModa(a)                                                                          premise

        +1 (2) Ob(a)                                                                                 premise

             (3) Ob(a) ( UModus(a) ( PModa(a)                                        LA4

             (4) UModus(a) ( PModa(a)                                                 MP (2), (3)

             (5) PModa(a)                                                                      (-omitting (4)

             (6) PModa(a) ( (NModa(a) ( Moda(a)    Theorem of modal incompatibility

             (7) (NModa(a) ( Moda(a)                                                   MP (5), (6)

             (8) (NModa(a)                                                                    (-omitting (7)

             (9) NModa(a) ( (NModa(a)                                               (-adding (1), (8)

       -1 (10) Ob(a) ( NModa(a) ( (NModa(a)                           omitting of premise (2)

            (11) (Ob(a)                                                                        consequence of (10)

Theorem of object transfer. Nomen(a) ( ObNomen(b) ( (a (eN b) ( ObNomen(a)

Proof.  (1) Nomen(a)                                                                              1st premise

            (2) ObNomen(b)                                                                         2nd premise

            (3) a (eN b                                                                                   3rd premise

            (4) ObNomen(b) ( Nomen(b) ( (x(Nomen1(b,x) ( Ob(x))      LDV.10.

            (5) Nomen(b) ( (x(Nomen1(b,x) ( Ob(x))                               MP (2), (4)

            (6) (x(Nomen1(b,x) ( Ob(x))                                                (-omitting (5)

      +1  (7) (ObNomen(a)                                                                           premise

            (8) (ObNomen(a) ( (Nomen(a) ( (x(Nomen1(a,x) ( (Ob(x))     LDV.10.

            (9) (Nomen(a) ( (x(Nomen1(a,x) ( (Ob(x))                     consequence of (7), (8)

          (10) (x(Nomen1(a,x) ( (Ob(x))                                           consequence of (1), (9)

          (11) Nomen1(a,x0) ( (Ob(x0)                                                  (x-omitting (10)

          (12) Nomen1(a,x0)                                                                  (-omitting (11)

          (13) (Ob(x0)                                                                             (-omitting (11)

          (14) a (eN b ( (x(Nomen1(a,x) ( Nomen1(b,x))                     LDI13.

          (15) (x(Nomen1(a,x) ( Nomen1(b,x))                                   MP (3), (14)

          (16) Nomen1(a,x) ( Nomen1(b,x)                                       (x-omitting (15)

          (17) Nomen1(a,x0) ( Nomen1(b,x0)                     substitution of x0 for x in (16)

          (18) Nomen1(b,x0)                                                                   MP (12), (17)

          (19) Nomen1(b,x0) ( (Ob(x0)                                                (-adding (13), (18)

          (20) (x(Nomen1(b,x) ( (Ob(x))                                          (x-adding (19)

          (21) ((x(Nomen1(b,x) ( Ob(x))                                      consequence of (20)

          (22) (x(Nomen1(b,x) ( Ob(x)) ( ((x(Nomen1(b,x) ( Ob(x)) (-adding (6), (21)

   -1   (23) (ObNomen(a) ( A((A                               omitting of premise (7) [here A is (6)]

          (24) ObNomen(a)                                                               consequence of (23)

First theorem of positive content. ObNomen(a) ( Nomen2(a,b) ( PModa(b)

Proof.     (1) ObNomen(a)                                                                 1st premise

               (2) Nomen2(a,b)                                                                  2nd premise

          +1 (3) NModa(b)                                                                        premise

               (4) ObNomen(a) ( Nomen(a) ( (x(Nomen1(a,x) ( Ob(x))   LDV.10.

               (5) Nomen(a) ( (x(Nomen1(a,x) ( Ob(x))                           MP (1), (4)

               (6) NModa(b) ( (Ob(b)                                              Theorem of non-object

               (7) (Ob(b)                                                                                MP (3), (6)

               (8) ((b ( b) ( (Ob(b)                                                        consequence of (7)

               (9) NModa(b) ( Moda(b)                                                        DNMODA

             (10) Moda(b)                                                                              MP (3), (9)

             (11) Moda(b) ( b ( b                                           Theorem of modusness of mode, 

                                                             Theorem of modus and identical mode equivalence, D(1.

             (12) b ( b                                                                                    MP (10), (11)

             (13) b ( b ( (((b ( b) ( (Ob(b))                                            (-adding (8), (12)

             (14) b ( b ( (((b ( b) ( (Ob(b)) ( b (i b                                       LDI

             (15) b (i b                                                                                     MP (13), (14)

             (16) Nomen2(a,b) ( (Nom(a,b,b) ( b (i b)                                    LA1

             (17) Nom(a,b,b) ( b (i b                                                               MP (2), (16)

             (18) Nom(a,b,b)                                                            consequence of (15), (17)

             (19) Nom(a,b,b) ( Nomen1(a,b)                                               LD123., LD13.

             (20) Nomen1(a,b)                                                                          MP (18), (19)

             (21) Nomen1(a,b) ( (Ob(b)                                                    (-adding (7), (20)

             (22) (x(Nomen1(a,x) ( (Ob(x))                                                 (x-adding (21)

             (23) ((x(Nomen1(a,x) ( Ob(x))                                        consequence of (22)

             (24) (x(Nomen1(a,x) ( Ob(x))                                              (-omitting (5)

             (26) (x(Nomen1(a,x) ( Ob(x)) ( ((x(Nomen1(a,x) ( Ob(x))  (-adding (23), (24)

      -1    (27) NModa(b) ( A((A                                 omitting of premise (3) [here A is (24)]

             (28) ( NModa(b)                                                                 consequence of (27)

             (29) Nomen2(a,b) ( (xNom(a,b,x)                                        LD12., LD123.

             (30) (xNom(a,b,x)                                                                    MP (2), (29)

             (31) Nom(a,b,x0)                                                                   (x-omitting (30)

             (32) Nom(a,b,x0) ( x0 ( b                                   Second theorem of name modality                         

             (33) x0 ( b                                                                                  MP (31), (32)

             (34) x0 ( b ( Moda(b)                                                            D(1., Lemma 3

             (35) Moda(b)                                                                              MP (33), (34)

             (36) Moda(b) ( ( NModa(b)                                                  (-adding (28), (35)

             (37) PModa(b) ( (NModa(b) ( Moda(b)            Theorem of modal incompatibility

             (38) PModa(b)                                                             consequence of (36), (37)

Second theorem of positive content. ObNomen(a) ( PModa(con(a))

Proof.   (1) ObNomen(a)                                                                         premise

             (2) ObNomen(a) ( Nomen(a)                                                    LDV.10.

             (3) Nomen(a)                                                                           MP (1), (2)

             (4) Nomen(a) ( (xNomen2(a,x)                                    LD1., LD12., LD123.

             (5) (xNomen2(a,x)                                                                   MP (3), (4)

             (6) Nomen2(a,x0)                                                                    (x-omitting (5)

             (7) Nomen2(a,x0) ( x0 = con(a)                                                      DLIn

             (8) x0 = con(a)                                                               consequence of (6), (7)            

             (9) ObNomen(a) ( Nomen2(a,x0) ( PModa(x0) First theorem of positive content

           (10) ObNomen(a) ( Nomen2(a,x0)                                       (-adding (1), (6)

     (11) PModa(x0)                                                                            MP (9), (10)

     (12) PModa(x0) ( x0 = con(a)                                               (-adding (8), (11)

     (13) PModa(x0) ( x0 = con(a) ( PModa(con(a)) Extensional theorem of substitution*

     (14) PModa(con(a))                                                                MP (12), (13)

First theorem of  content inclusion. a (eN b ( Nomen2(b,c) ( Nomen1(a,d) ( d ( c

Proof.  (1) a (eN b                                                                                          1st premise

            (2) Nomen2(b,c)                                                                                 2nd premise

            (3) Nomen1(a,d)                                                                                 3rd premise

            (4) a (eN b ( (x(Nomen1(a,x) ( Nomen1(b,x))                                  LDI13.

            (5) (x(Nomen1(a,x) ( Nomen1(b,x))                                                  MP (1), (4)

            (6) Nomen1(a,x) ( Nomen1(b,x)                                                      (x-omitting (5)

            (7) Nomen1(a,d) ( Nomen1(b,d)                                       substitution of  d for x in (6)                 

            (8) Nomen1(b,d)                                                                                 MP (3), (7)

            (9) Nomen1(b,d) ( (xNom(b,x,d)                                                       LD13., LD123.

          (10) (xNom(b,x,d)                                                                                 MP (8), (9)

          (11) Nom(b,x0,d)                                                                                (x-omitting (10)

          (12) Nom(b,x0,d) ( d ( x0                                        Second theorem of name modality

          (13) d ( x0                                                                                               MP (11), (12)

          (14) Nomen(b) ( iSing(b)                                                                         LA3

          (15) Nomen2(b,c) ( Nomen(b)                                                   LD12., LD1., LD123.

          (16) Nomen(b)                                                                                      MP (2), (15)

          (17) iSing(b)                                                                                         MP (14), (16)

          (18) iSing(b) ( (x(y(Nomen2(b,x)( Nomen2(b,y) ( x=y)                 LDV.6.

          (19) (x(y(Nomen2(b,x)( Nomen2(b,y) ( x=y)                                   MP (17), (18)

          (20) Nomen2(b,x)( Nomen2(b,y) ( x=y                                          (x(y-omitting (19)

          (21) Nomen2(b,x0)( Nomen2(b,c) ( 

                                                              x0=c    substitution of x0 and c for x and y resp. in (20)

          (22) Nom(b,x0,d) ( Nomen2(b,x0)                                                  LD123., LD12.

          (23) Nomen2(b,x0)                                                                               MP (11), (22)

          (24) Nomen2(b,x0)( Nomen2(b,c)                                                  (-adding (2), (23)

          (25) x0=c                                                                                              MP (21), (24)

          (26) x0=c ( x0 ( c                                                                                 DE, D(1.

          (27) x0 ( c                                                                                             MP (25), (26)

          (28) d ( x0 ( x0 ( c                                                                         (-adding (13), (27)

          (29) d ( x0 ( x0 ( c  (  d ( c                               Theorem of  transitivity, D(1.

          (30) d ( c                                                                                     MP (28), (29)

Second theorem of  content inclusion. eSing(a) ( a (eN b ( des(a) ( con(b)

Proof.  (1) eSing(a)                                                                         1st premise

            (2) a (eN b                                                                           2nd premise

            (3) eSing(a) ( Nomen(a)                                                    LDV.3.

            (4) Nomen(a)                                                                       MP (1), (3)

            (5) Nomen(a) ( (xNomen1(a,x)                                         LD1., LD13., LD123.

            (6) (xNomen1(a,x)                                                              MP (4), (5)

            (7) Nomen1(a,x0)                                                                 (x-omitting (6)

            (8) Nomen1(a,x0) ( x0 = des(a)                                            DLEx1

            (9) x0 = des(a)                                                               consequence of (7), (8)

          (10) a (eN b ( (x(Nomen1(a,x) ( Nomen1(b,x))                  LDI13.

          (11) (x(Nomen1(a,x) ( Nomen1(b,x))                                  MP (2), (10)

          (12) Nomen1(a,x) ( Nomen1(b,x)                                        (x-omitting (11)

          (13) Nomen1(a,x0) ( Nomen1(b,x0)                        substitution of x0 for x in (12)                       

          (14) Nomen1(b,x0)                                                                  MP (7), (13)

          (15) Nomen1(b,x0) ( (yNom(b,y,x0)                                    LD13., LD123.

          (16) (yNom(b,y,x0)                                                                MP (14), (15)

          (17) Nom(b,y0,x0)                                                                 (y-omitting (16)

          (18) Nom(b,y0,x0) ( Nomen2(b,y0)                                       LD123., LD12.

          (19) Nomen2(b,y0)                                                                   MP (17), (18)

          (20) Nomen2(b,y0) ( y0 = con(b)                                                      DLIn

          (21) y0 = con(b)                                                              consequence of (19), (20)

          (22) a (eN b ( Nomen1(a,x0) ( Nomen2(b,y0)                  (-adding (2), (7), (19)            

          (23) a (eN b ( Nomen1(a,x0) ( Nomen2(b,y0) ( 

                                                                     x0 ( y0         First theorem of  content inclusion       

          (24) x0 ( y0                                                                                MP (22), (23)

          (25) x0 ( y0 ( x0 = des(a) ( y0 = con(b)                           (-adding (9), (21), (24)

          (26) x0 ( y0 ( x0 = des(a) ( y0 = con(b) ( 

                                                             des(a) ( con(b)   Extensional theorem of substitution*

          (27) des(a) ( con(b)                                                                    MP (25), (26)

Theorem of  necessary i-criterion. a (L b ( des(a) (1 con(b)

Proof.  (1) a (L b                                                                                     3rd premise

            (2) a (L b ( eSing(a) ( ObNomen(b) ( (a (eN b)                             DL(
            (3) eSing(a) ( ObNomen(b) ( (a (eN b)                                      MP (1), (2)

            (4) eSing(a)                                                                                 (-omitting (3)

            (5) a (eN b                                                                                   (-omitting (3)

            (6) eSing(a) ( (a (eN b)                                                            (-adding (4), (5)

            (7) eSing(a) ( (a (eN b) ( des(a) ( con(b)     Second theorem of  content inclusion

            (8) ObNomen(a) ( PModa(con(a))                Second theorem of positive content

            (9) eSing(a) ( Nomen(a)                                                                 LDV.3.

          (10) Nomen(a)                                                                               MP (4), (9)

          (11) ObNomen(b)                                                                          (-omitting (3)

          (12) Nomen(a) ( ObNomen(b) ( a (eN b                             (-adding (5), (10), (11)

          (13) Nomen(a) ( ObNomen(b) ( a (eN b ( ObNomen(a) Theorem of object transfer

          (14) ObNomen(a)                                                                       MP (12), (13)

          (15) PModa(con(a))                                                                    MP (8), (14)

          (16) des(a) ( con(b)                                                                     MP (6), (7)

          (17) des(a) ( con(b) ( PModa(con(a))                              (-adding (15), (16)

          (18) des(a) ( con(b) ( PModa(con(a)) ( des(a) (1 con(b)        DPMODA2, D(1.

          (19) des(a) (1 con(b)                                                                  MP (17), (18)

Theorem of  double content. If a is nomen, then Con(con(a))

Proof.  (1) Nomen(a)                                                                            premise

            (2) Nomen(a) ( (bNomen2(a,b,c)                                          LD1., LD12., LD123.

            (3) (bNomen2(a,b)                                                                   MP (1), (2)

            (4) Nomen2(a,b0)                                                                      (b-omitting (3)

            (5) Nomen2(a,b0) ( b0 = con(a)                        DLIn [here a is nomen and b0 is content]

            (6) b0 = con(a)                                                               consequence of (4), (5)

            (7) Nomen2(a,b0) ( Con(b0)                                              LD12., LD2., LD123.

            (8) Con(b0)                                                                             MP (4), (7)

            (9) Con(b0) ( b0 = con(a)                                                 (-adding (6), (8)

          (10) Con(b0) ( b0 = con(a) ( Con(con(a))        Extensional theorem of substitution*

          (11) Con(con(a))                                                                     MP (9), (10)

Theorem of content. If  b is nomen, then Nomen2(b,con(b))

Proof.    +1 (1) z = con(b) ( Con(z)                        premise [here b is nomen and z is content]

                   (2) z = con(b) ( Nomen2(b,z)                                                        DLIn 

                   (3) Nomen2(b,z)                                                             consequence of (1), (2)

                   (4) Nomen2(b,z) ( z = con(b)                                          (-adding (1), (4)

                   (5) Nomen2(b,z) ( z = con(b) ( 

                                         Nomen2(b,con(b))                  Extensional theorem of substitution*     

                   (6) Nomen2(b,con(b))                                                       MP (4), (5)

              -1  (7) z = con(b) ( Con(z) ( Nomen2(b,con(b))           omitting of premise (1)

                   (8) con(b) = con(b) ( Con(con(b)) ( 

                                                           Nomen2(b,con(b))        substitution of con(b) for z in (7)

                   (9) Nomen(b)                                                        condition of the theorem

                 (10) Nomen(b) ( (a(cNom(b,a,c)                                   LD1., LD123.

                 (11) (a(cNom(b,a,c)                                                         MP (9), (10)

                 (12) Nom(b,a0,c0)                                                              (a(c-omitting (11)

                 (13) Nom(b,a0,c0) ( c0 ( a0                                        Theorem of name modality

                 (14) c0 ( a0                                                                          MP (12), (13)

                 (15) c0 ( a0 ( a0 = a0               D(1., Lemma 3, Theorem of modus equivalence**

                 (16) a0 = a0                                                                           MP (14), (15)

                 (17) Nom(b,a0,c0) ( Nomen2(b,a0)                                    LD123., LD12.

                 (18) Nomen2(b,a0)                                                                 MP (12), (17)

                 (19) Nomen2(b,a0) ( a0 = con(b)                DLIn [here b is nomen and a0 is content]

                 (20) a0 = con(b)                                                      consequence of (18), (19)

                 (21) a0 = a0 ( a0 = con(b)                                                     (-adding (16), (20)

                 (22) a0 = a0 ( a0 = con(b) ( con(b) = con(b) Extensional theorem of substitution*

                 (23) con(b) = con(b)                                                              MP (21), (22)

                 (24) Con(con(b))                                               Theorem of double content

                 (25) con(b) = con(b) ( Con(con(b))                           (-adding (23), (24)

                 (26) Nomen2(b,con(b))                                                   MP (8), (25)

Theorem of  designate inclusion. eSing(a) ( Nomen(b) ( (des(a) ( con(b) ( a (eN b)

Proof.  (1) eSing(a)                                                                                     1st premise

            (2) Nomen(b)                                                                                  3rd premise

            (3) des(a) ( con(b)                                                                           4th premise

      +1  (4) Nomen1(a,x)                                                                               premise

            (5) Nomen1(a,x) ( x = des(a)                                                            DLEx1

            (6) x = des(a)                                                                     consequence of (4), (5)

            (7) x = des(a) ( des(a) ( con(b)                                                (-adding (3), (6)

            (8) x = des(a) ( des(a) ( con(b) ( x ( con(b)    Extensional theorem of substitution*

            (9) x ( con(b)                                                                               MP (7), (8)

     +2 (10) Ob(con(b))                                                                               premise

          (11) Ob(con(b)) ( UModus(con(b))                                                  LA4

          (12) UModus(con(b))                                                                   MP (10), (11)

          (13) UModus(con(b)) ( (y(y ( con(b) ( con(b) ( y)                       DU.

          (14) (y(y ( con(b) ( con(b) ( y)                                                 MP (12), (13)

          (15) y ( con(b) ( con(b) ( y                                                         (y-omitting (14)

          (16) x ( con(b) ( con(b) ( x                                              substitution of x for y in (15)

          (17) con(b) ( x                                                                               MP (9), (16)

     -2 (18) Ob(con(b)) ( con(b) ( x                                        omitting of premise (10)

          (19) ((con(b) ( x) ( ((Ob(con(b)))                                      consequence of (18)

          (20) x ( con(b) ( (((con(b) ( x) ( ((Ob(con(b))))              (-adding (9), (19)

          (21) x ( con(b) ( (((con(b) ( x) ( ((Ob(con(b)))) ( x (i con(b)      LDI

          (22) x (i con(b)                                                                             MP (20), (21)

          (23) Nomen2(b,con(b))                                                         Theorem of content                            

          (24) Nomen2(b,con(b)) ( (Nom(b,con(b),x) ( x (i con(b))             LA1

          (25) Nom(b,con(b),x) ( x (i con(b)                                           MP (23), (24)

          (26) Nom(b,con(b),x)                                                     consequence of (22), (25)

          (27) Nom(b,con(b),x) ( Nomen1(b,x)                                            LD123., LD13.

          (28) Nomen1(b,x)                                                                       MP (26), (27)

     -1 (29) Nomen1(a,x) ( Nomen1(b,x)                                    omitting of premise (4)

         (30) (x(Nomen1(a,x) ( Nomen1(b,x))                                (x-adding (29)

         (31) (x(Nomen1(a,x) ( Nomen1(b,x)) ( a (eN b                         LDI13.

         (32) a (eN b                                                                                  MP (30), (31)

It is clear, since des(a) (1 con(b) entails des(a) ( con(b), we can accept the following version of the theorem:

Theorem of  designate inclusion*. eSing(a) ( Nomen(b) ( (des(a) (1 con(b) ( a (eN b)

Theorem of  sufficient i-criterion. eSing(a) ( ObNomen(b) ( (des(a) ( con(b) ( a (L b)

Proof.  (1) eSing(a)                                                                                     1st premise

            (2) ObNomen(b)                                                                              2nd premise

            (3) des(a) (1 con(b)                                                                          3rd premise

            (4) ObNomen(b) ( Nomen(b)                                                          LDV.10.

            (5) Nomen(b)                                                                               MP (2), (4)

            (6) eSing(a) ( Nomen(b) ( 

                                   (des(a) ( con(b) ( a (eN b)              Theorem of  designate inclusion

            (7) eSing(a) ( Nomen(b) ( (des(a) ( con(b)                            (-adding (1), (3), (5)

            (8) a (eN b                                                                      consequence of (6), (7)

            (9) eSing(a) ( ObNomen(b) ( a (eN b                             (-adding (1), (2), (8)

          (10) eSing(a) ( ObNomen(b) ( a (eN b ( a (L b                             DL(
          (11) a (L b                                                                                     MP (9), (10)

It is clear, since des(a) (1 con(b) entails des(a) ( con(b), we can accept the following version of the theorem:

Theorem of  sufficient i-criterion*. eSing(a) ( ObNomen(b) ( (des(a) (1 con(b) ( a (L b)

Taking into account Theorem of  necessary i-criterion and Theorem of  sufficient i-criterion*, one can accept the following

Theorem of intensional criterion of L-functor. eSing(a) ( ObNomen(b) ( (des(a) (1 con(b) ( a (L b)

Therefore, in accordance with this theorem, we can define L-functor as a special case of (-functor for contents of names.

Now I shall prove some auxiliary theorems for extensional criterion of L-functor. 

Theorem of extensional. If a is nomen, then Set(ex(a))

Proof. (1) Set(ex(a),P) ( (x((ex(a) ( x ( NModa(x))((ex(a) (* x ( 

                                         Model(x) ( P(x))(Moda(ex(a))           Theorem of set definitions

          (2) ex(a) ( x  ( NModa(x)                                                             DLEx2.1.

          (3) (bNModa(b)                                                                                AN

          (4) (bNModa(b)                                                                      (-omitting (3)

          (5) NModa(b0)                                                                        (b-omitting (4)

          (6) ex(a) ( b0                                                                          consequence of (2), (5)

          (7) ex(a) ( b0 ( Moda(ex(a))              Lemma 3, D(1., Theorem of modus and 

                                                                                                         mode equivalence                      

          (8) Moda(ex(a))                                                                            MP (6), (7)

          (9) ex(a) (* x ( Model(x) ( Nomen1(a,x)                                        DLEx2.2.

      (10) (ex(a) ( x  ( NModa(x)) ( (ex(a) (* x ( Model(x) ( Nomen1(a,x))   (-adding (2), (9)

        (11) (x((ex(a) ( x ( NModa(x))((ex(a) (* x ( 

                                           Model(x) ( Nomen1(a,x))                              (x-adding (10)

        (12) (x((ex(a) ( x ( NModa(x))((ex(a) (* x ( 

                                            Model(x) ( Nomen1(a,x))(Moda(ex(a))     (-adding (8), (11)

        (13) Set(ex(a),Nomen1(a,())                                               consequence of (1), (12)

        (14) (P(Set(ex(a),P))                                                             (P-adding (13)

        (15) (P(Set(ex(a),P)) ( Set(ex(a))                                                 DSET2.

        (16) Set(ex(a))                                                                              MP (14), (15)

Here Nomen1(a,() is a predicate such that Nomen1(a,()(x) ( Nomen1(a,x).

Theorem of reflexivity of designate. Nomen1(a,x) ( x ( x

Proof.  (1) Nomen1(a,x)                                                                           premise

            (2) Nomen1(a,x) ( (yNom(a,y,x)                                           LD13., LD123.

            (3) (yNom(a,y,x)                                                                       MP (1), (2)

            (4) Nom(a,y0,x)                                                                         (y-omitting (3)

            (5) Nom(a,y0,x) ( x ( y0                                     Second theorem of name modality

            (6) x ( y0                                                                                     MP (4), (5)

            (7) x ( y0 ( x ( x                                        D(1., Lemma 3, Theorem of modus and 

                                                                                                  identical mode equivalence

           (8) x ( x                                                                                        MP (6), (7)

Theorem of modelity of designate. Des(c) ( Model(c)

Proof. (1) Des(c)                                                                              premise

           (2) Des(c) ( (a(b(fNom(a,b,c,f)                                             LD3

           (3) (a(b(fNom(a,b,c,f)                                                         MP (1), (2)

           (4) Nom(a0,b0,c,f0)                                                        (a(b(f-omitting (3)

           (5) (c(fNom(a0,b0,c,f)                                                    (c(f-adding (4)

           (6) (c(fNom(a0,b0,c,f) ( Nomen2(a0,b0)                              LD12

           (7) Nomen2(a0,b0)                                                               MP (5), (6)

           (8) (fNom(a0,b0,c,f)                                                          (f-adding (4)

           (9) (fNom(a0,b0,c,f) ( Nom(a0,b0,c)                                    LD123

         (10) Nom(a0,b0,c)                                                                 MP (8), (9)

         (11) Nomen2(a0,b0) ( (Nom(a0,b0,c) ( c (i b0)                        LA1

         (12) Nom(a0,b0,c) ( c (i b0                                                   MP (7), (11)

         (13) c (i b0                                                                consequence of (10), (12)

         (14) c (i b0 ( c ( b0                                                                LDI

         (15) c ( b0                                                                             MP (13), (14)

         (16) c ( b0 ( Modus(c)                                                       D(, Lemma 3

         (17) Modus(c)                                                                      MP (15), (16)

         (18) Modus(c) ( Model(c)                                                        LA6

         (19) Model(c)                                                                       MP (17), (18)

Theorem of extensional inclusion. If a and b are nomens, then ex(a) ( ex(b) ( a (eN b

Proof.  1. ex(a) ( ex(b) ( a (eN b

            (1) ex(a) ( ex(b)                                                                                       premise

            (2) ex(a) ( ex(b) ( Set(ex(a)) ( Set(ex(b)) ( (x(x ( ex(a) ( x ( ex(b))  DSET4.

            (3) Set(ex(a)) ( Set(ex(b)) ( (x(x ( ex(a) ( x ( ex(b))                        MP (1), (2)

            (4) (x(x ( ex(a) ( x ( ex(b))                                                             (-omitting (3)     

      +1  (5) Nomen1(a,x)                                                                                        premise

            (6) Nomen1(a,x) ( Model(x)                         LD3., Theorem of modelity of designate  

            (7) Model(x)                                                                                           MP (5), (6)

            (8) Model(x)(Nomen1(a,x)                                                              (-adding (5), (7)

          (9) ex(a) (* x ( Model(x) ( Nomen1(a,x)                                                 DLEx2.2.

          (10) ex(a) (* x                                                                        consequence of (8), (9)

          (11) Set(ex(a))                                                                         Theorem of extensional         

          (12) Set(ex(a)) ( ex(a) (* x                                                               (-adding (10), (11)

          (13) Set(ex(a)) ( ex(a) (* x  (  x ( ex(a)                                               DSET3., D(*. 

                                                                                                      [here ex(a) (* x  ( Moda(x)]

          (14) x ( ex(a)                                                                                        MP (12), (13)              

          (15) x ( ex(a) ( x ( ex(b)                                                                    (x-omitting (4)

          (16) x ( ex(b)                                                                                         MP (14), (15)

          (17) x ( ex(b) ( Set(ex(b)) ( ex(b) (* x                                                   DSET3., D(*.

          (18) Set(ex(b)) ( ex(b) (* x                                                                    MP (16), (17)

          (19) ex(b) (* x                                                                                        (-omitting (18)

          (20) ex(b) (* x ( Model(x) (Nomen1(b,x)                                                  DLEx2.2.

          (21) Model(x)(Nomen1(b,x)                                                                   MP (19), (20)

          (22) Nomen1(b,x)                                                                                    (-omitting (21)

     -1 (23) Nomen1(a,x) ( Nomen1(b,x)                                                omitting of premise (5)

          (24) (x(Nomen1(a,x) ( Nomen1(b,x))                                                 (x-adding (23)

          (25) (x(Nomen1(a,x) ( Nomen1(b,x)) ( a (eN b                                      LDI13.

          (26) a (eN b                                                                                             MP (24), (25)

        2. a (eN b ( ex(a) ( ex(b)

         (1) a (eN b                                                                                                 premise

         (2) a (eN b ( (x(Nomen1(a,x) ( Nomen1(b,x))                                         LDI13.

         (3) (x(Nomen1(a,x) ( Nomen1(b,x))                                                      MP (1), (2)

         (4) Nomen1(a,x) ( Nomen1(b,x)                                                       (x-omitting (3)

    +1 (5) x ( ex(a)                                                                                             premise

         (6) x ( ex(a) ( Set(ex(a)) ( ex(a) (* x                                                 DSET3., D(*.

         (7) Set(ex(a)) ( ex(a) (* x                                                                     MP (5), (6)

         (8) ex(a) (* x                                                                                          (-omitting (7)

         (9) ex(a) (* x ( Model(x) (Nomen1(a,x)                                                  DLEx2.2.

       (10) Model(x) (Nomen1(a,x)                                                                    MP (8), (9)

       (11) Nomen1(a,x)                                                                              (-omitting (10)

       (12) Nomen1(b,x)                                                                                    MP (4), (11)

       (13) Model(x)                                                                                        (-omitting (10)

       (14) Model(x)(Nomen1(b,x)                                                            (-adding (12), (13)

       (15) Model(x)(Nomen1(b,x) ( ex(b) (* x                                                  DLEx2.2.

       (16) ex(b) (* x                                                                                          MP (14), (15)

       (17) Set(ex(b))                                                                               Theorem of extensional

       (18) Set(ex(b)) ( ex(b) (* x                                                                (-adding (16), (17)

       (19) Set(ex(b)) ( ex(b) (* x ( x ( ex(b)                                                 DSET3., D(*.

       (20) x ( ex(b)                                                                                           MP (18), (19)

   -1 (21) x ( ex(a) ( x ( ex(b)                                                            omitting of premise (5)

       (22) (x(x ( ex(a) ( x ( ex(b))                                                              (x-adding (21)

       (23) Set(ex(a))                                                                               Theorem of extensional

       (24) Set(ex(a)) ( Set(ex(b)) ( (x(x ( ex(a) ( x ( ex(b))          (-adding (17), (22), (23)

       (25) Set(ex(a)) ( Set(ex(b)) ( (x(x ( ex(a) ( x ( ex(b)) ( ex(a) ( ex(b)     DSET4.

       (26) ex(a) ( ex(b)                                                                                          MP (24), (25)

Theorem of singularity. If a is nomen, then AtSet(ex(a)) ( eSing(a)

Proof.  1. AtSet(ex(a)) ( eSing(a)

     (1) AtSet(ex(a))                                                                                                 premise

     (2) AtSet(ex(a)) ( (x(x ( ex(a)) ( (x(y(x ( ex(a) ( y ( ex(a) ( x = y)          DSET6.

     (3) (x(x ( ex(a)) ( (x(y(x ( ex(a) ( y ( ex(a) ( x = y)                            MP (1), (2)

     (4) (x(y(x ( ex(a) ( y ( ex(a) ( x = y)                                                    (-omitting (3)

     (5) x ( ex(a) ( y ( ex(a) ( x = y                                                         (x(y-omitting (4)

+1 (6) Nomen1(a,x) ( Nomen1(a,y)                                                                       premise

     (7) Nomen1(a,x)                                                                                            (-omitting (6)

     (8) Nomen1(a,x) ( Model(x)                                LD3., Theorem of modelity of designate

     (9) Model(x)                                                                                                  MP (7), (8)

   (10) Model(x) ( Nomen1(a,x)                                                                     (-adding (7), (9)

   (11) x (* ex(a) ( Model(x) ( Nomen1(a,x)                                                        DLEx2.2.

   (12) x (* ex(a)                                                                              consequence of (10), (11)

   (13) Set(ex(a))                                                                                 Theorem of extensional

   (14) Set(ex(a)) ( x (* ex(a)                                                                    (-adding (12), (13)

   (15) x ( ex(a) ( Set(ex(a)) ( x (* ex(a)                                                           DSET3., D(*.

   (16) x ( ex(a)                                                                             consequence of (14), (15)        

By the same way ((6)-(16)) one can prove that

   (17) y ( ex(a)

   (18) x ( ex(a) ( y ( ex(a)                                                                (-adding (16), (17)

   (19) x = y                                                                                               MP (5), (18)

-1(20) Nomen1(a,x) ( Nomen1(a,y) ( x = y                                     omitting of premise (6)

   (21) (x(y(Nomen1(a,x) ( Nomen1(a,y) ( x = y)                              (x(y-adding (20)

   (22) Nomen(a)                                                                               condition of the theorem

   (23) Nomen(a) ( (x(y(Nomen1(a,x) ( Nomen1(a,y) ( x = y)     (-adding (21), (22)

   (24) Nomen(a) ( (x(y(Nomen1(a,x) ( Nomen1(a,y) ( x = y) (
                                                                                  eSing(a)                      LDV.3.

   (25) eSing(a)                                                                                           MP (23), (24)

  2. eSing(a) ( AtSet(ex(a))

     (1) eSing(a)                                                                                                  premise

     (2) eSing(a) ( Nomen(a) ( (x(y(Nomen1(a,x) ( Nomen1(a,y) ( x = y)  LDV.3.

     (3) Nomen(a) ( (x(y(Nomen1(a,x) ( Nomen1(a,y) ( x = y)          MP (1), (2)

     (4) Nomen(a) ( (xNomen1(a,x)                                                   LD1., LD13., LD123.

     (5) Nomen(a)                                                                                   (-omitting (3)

     (6) (xNomen1(a,x)                                                                                MP (4), (5)

     (7) Nomen1(a,x0)                                                                              (x-omitting (6)

     (8) Nomen1(a,x0) ( x0 ( x0                                             Theorem of reflexivity of designate

     (9) x0 ( x0                                                                                            MP (7), (8)

   (10) x0 ( x0 ( Nomen1(a,x0)                                                               (-adding (7), (9)

   (11) ex(a) (* x0 ( x0 ( x0 ( Nomen1(a,x0)                                               DLEx2.2.

   (12) ex(a) (* x0                                                                          consequence of (10), (11)

   (13) Set(ex(a))                                                                              Theorem of extensional

   (14) Set(ex(a)) ( ex(a) (* x0                                                              (-adding (12), (13)

   (15) Set(ex(a)) ( ex(a) (* x0  (  x0 ( ex(a)                                               DSET3., D(*.

   (16) x0 ( ex(a)                                                                                         MP (14), (15)

   (17) (x(x ( ex(a))                                                                                   (x-adding (16)

+1(18) x ( ex(a) ( y ( ex(a)                                                                          premise

   (19) x ( ex(a)                                                                                        (-omitting (18)

   (20) x ( ex(a) ( Set(ex(a)) ( ex(a) (* x                                                 DSET3., D(*.

   (21) Set(ex(a)) ( ex(a) (* x                                                                   MP (19), (20)

   (22) ex(a) (* x                                                                                       (-omitting (21)

   (23) ex(a) (* x ( Model(x) ( Nomen1(a,x)                                                 DLEx2.2.

   (24) Model(x) ( Nomen1(a,x)                                                                 MP (22), (23)

   (25) Nomen1(a,x)                                                                                   (-omitting (24)

By the same way ((18)-(25)) we can prove that

   (26) Nomen1(a,y)

   (27) Nomen1(a,x) ( Nomen1(a,y)                                                         (-adding (25), (26)

   (28) (x(y(Nomen1(a,x) ( Nomen1(a,y) ( x = y)                               (-omitting (3)

   (29) Nomen1(a,x) ( Nomen1(a,y) ( x = y                                          (x(y-omitting (28)

   (30) x = y                                                                                                   MP (27), (29)

-1(31) x ( ex(a) ( y ( ex(a) ( x = y                                               omitting of premise (18)

   (32) (x(y(x ( ex(a) ( y ( ex(a) ( x = y)                                          (x(y-adding (31)

   (33) (x(x ( ex(a)) ( (x(y(x ( ex(a) ( y ( ex(a) ( x = y)               (-adding (17), (32)

   (34) (x(x ( ex(a)) ( (x(y(x ( ex(a) ( y ( ex(a) ( x = y) ( 

                                                                           AtSet(ex(a))                        DSET6.

   (35) AtSet(ex(a))                                                                                        MP (33), (34)

Theorem of objectness. If a is nomen, then ObSet(ex(a)) ( ObNomen(a)

Proof.  1. ObSet(ex(a)) ( ObNomen(a)

           (1) ObSet(ex(a))                                                                                    premise

           (2) ObSet(ex(a)) ( (x(x ( ex(a) ( Ob(x)) ( (x(x ( ex(a) ( Ob(x))   DLEx3.

           (3) (x(x ( ex(a) ( Ob(x)) ( (x(x ( ex(a) ( Ob(x))                            MP (1), (2)

           (4) Nomen(a)                                                                     condition of the theorem

    +1   (5) Nomen1(a,x)                                                                                     premise

           (6) Nomen1(a,x) ( x ( x                                           Theorem of reflexivity of designate                                     

           (7) x ( x                                                                                                  MP (5), (6)

           (8) x ( x ( Nomen1(a,x)                                                                        (-adding (5), (7)

           (9) x (* ex(a) ( x ( x ( Nomen1(a,x)                                                      DLEx2.2.

         (10) x (* ex(a)                                                                          consequence of (8), (9)

         (11) Set(ex(a))                                                                              Theorem of extensional

         (12) Set(ex(a)) ( x (* ex(a)                                                               (-adding (10), (11)

         (13) x ( ex(a) ( Set(ex(a)) ( x (* ex(a)                                                    DSET3., D(*.

         (14) x ( ex(a)                                                                         consequence of (12), (13)        

         (15) (x(x ( ex(a) ( Ob(x))                                                              (-omitting (3)

         (16) x ( ex(a) ( Ob(x)                                                                     (x-omitting (15)

         (17) Ob(x)                                                                                         MP (14), (16)

    -1  (18) Nomen1(a,x) ( Ob(x)                                                        omitting of premise (5)

         (19) (x(Nomen1(a,x) ( Ob(x))                                                         (x-adding (18)

         (20) Nomen(a) ( (x(Nomen1(a,x) ( Ob(x))                                    (-adding (4), (19)

         (21) Nomen(a) ( (x(Nomen1(a,x) ( Ob(x)) ( ObNomen(a)               LDV.10.

         (22) ObNomen(a)                                                                                  MP (20), (21)

  2. ObNomen(a) ( ObSet(ex(a)) 

         (1) ObNomen(a)                                                                                      premise

         (2) ObNomen(a) ( Nomen(a) ( (x(Nomen1(a,x) ( Ob(x))                   LDV.10.

         (3) Nomen(a) ( (x(Nomen1(a,x) ( Ob(x))                                          MP (1), (2)

         (4) Nomen(a) ( (xNomen1(a,x)                                                   LD1., LD13., LD123.

         (5) Nomen(a)                                                                                   (-omitting (3)

         (6) (xNomen1(a,x)                                                                                MP (4), (5)

         (7) Nomen1(a,x0)                                                                              (x-omitting (6)

         (8) Nomen1(a,x0) ( Model(x0)                          LD3., Theorem of modelity of designate

         (9) Model(x0)                                                                                            MP (7), (8)

       (10) Model(x0) ( Nomen1(a,x0)                                                               (-adding (7), (9)

       (11) ex(a) (* x0 ( Model(x0) ( Nomen1(a,x0)                                               DLEx2.2.

       (12) ex(a) (* x0                                                                          consequence of (10), (11)

       (13) Set(ex(a))                                                                              Theorem of extensional

       (14) Set(ex(a)) ( ex(a) (* x0                                                              (-adding (12), (13)

       (15) Set(ex(a)) ( ex(a) (* x0  (  x0 ( ex(a)                                               DSET3., D(*.

       (16) x0 ( ex(a)                                                                                         MP (14), (15)

       (17) (x(x ( ex(a))                                                                                   (x-adding (16)

 +1  (18) x ( ex(a)                                                                                            premise

       (19) x ( ex(a) ( Set(ex(a)) ( ex(a) (* x                                              DSET3., D(*.

       (20) Set(ex(a)) ( ex(a) (* x                                                                   MP (18), (19)

       (21) ex(a) (* x                                                                                       (-omitting (20)

       (22) ex(a) (* x ( Model(x) ( Nomen1(a,x)                                              DLEx2.2.

       (23) Model(x) ( Nomen1(a,x)                                                              MP (21), (22)

       (24) Nomen1(a,x)                                                                                   (-omitting (23)

       (25) (x(Nomen1(a,x) ( Ob(x))                                                             (-omitting (3)

       (26) Nomen1(a,x) ( Ob(x)                                                                    (x-omitting (25)

       (27) Ob(x)                                                                                                 MP (24), (26)

  -1  (28) x ( ex(a) ( Ob(x)                                                               omitting of premise (18)

       (29) (x(x ( ex(a) ( Ob(x))                                                                   (x-adding (28)

       (30) (x(x ( ex(a)) ( (x(x ( ex(a) ( Ob(x))                                       (-adding (17), (29)

       (31) (x(x ( ex(a)) ( (x(x ( ex(a) ( Ob(x)) ( ObSet(ex(a))                    DLEx3.

       (32) ObSet(ex(a))                                                                                   MP (30), (31)

Now we can prove the following 

Theorem of extensional criterion (e-criterion) of L-functor. If a and b are nomens, then (a (L b ( AtSet(ex(a))) ( ObSet(ex(b)) ( (ex(a) ( ex(b))) 

Proof.(1) ex(a) ( ex(b) ( a (eN b                                   Theorem of extensional inclusion                                                                                

          (2) AtSet(ex(a)) ( eSing(a)                                  Theorem of singularity
          (3) ObSet(ex(a)) ( ObNomen(a)                          Theorem of objectness

          (4) a (L b ( eSing(a) ( ObNomen(b) ( (a (eN b)               DL(
          (5) a (L b ( AtSet(ex(a))) ( ObSet(ex(b)) ( (ex(a) ( ex(b)) consequence of (1)-(4)

This theorem provides parallelism between L-functor and set-theoretical expressions (extensionals) of names. 

Therefore we can see that version of Ontology by Lesniewski (L-Ontology) is one where three more primary ontologies are done. These are: 1) Modal Ontology, which is based on Mod-predicate, 2) Set-theoretical Ontology based on the concept of Set, and, finally, 3) Nomen Ontology, which is based on Nom-predicate. Hence L-Ontology is not the most elementary ontological language. After all, in my opinion, only Modal Ontology is the most primary version of Ontology, whereas other ontologies can be represented as more derivative in relation to this ontology. This is one of the basic matter of the importance of Modal Ontology. 

Let us investigate the concept of Ontological Definition in L-Ontology from the poin of view of extensional criterion of L-functor. 

Theorem of designate. eSing(a) ( Nomen1(a,des(a))

Proof. (1) eSing(a)                                                                                       premise

           (2) eSing(a) ( Nomen(a)                                                                  LDV.3.

           (3) Nomen(a)                                                                                MP (1), (2)

           (4) Nomen(a) ( (xNomen1(a,x)                                               LD1., LD13., LD123.

           (5) (xNomen1(a,x)                                                                           MP (3), (4)

           (6) Nomen1(a,x0)                                                                          (x-omitting (5)

           (7) Nomen1(a,x0) ( x0 = des(a)                                             DLEx1 

                                                                         [see (1) and Second theorem of name modality]

           (8) x0 = des(a)                                                                                   MP (6), (7)

           (9) Nomen1(a,x0) ( x0 = des(a)                                                   (-adding (6), (8)

         (10) Nomen1(a,x0) ( x0 = des(a) ( 

                                                Nomen1(a,des(a))           Extensional theorem of substitution*      

         (11) Nomen1(a,des(a))                                                                           MP (9), (10)

Theorem of membership. eSing(a) ( Nomen(b) ( [ex(a) ( ex(b) ( des(a) ( ex(b)]

Proof.  1. eSing(a) ( Nomen(b) ( [ex(a) ( ex(b) ( des(a) ( ex(b)]

      (1) eSing(a)                                                                                            1st premise

      (2) Nomen(b)                                                                                          2nd premise

      (3) ex(a) ( ex(b)                                                                                     3rd premise

      (4) ex(a) ( ex(b) ( Set(ex(a)) ( Set(ex(b)) ( (x(x ( ex(a) ( x ( ex(b))  DSET4.

      (5) Set(ex(a)) ( Set(ex(b)) ( (x(x ( ex(a) ( x ( ex(b))                    MP (3), (4)

      (6) (x(x ( ex(a) ( x ( ex(b))                                                               (-omitting (5)

      (7) x ( ex(a) ( x ( ex(b)                                                                     (x-omitting (6)

      (8) eSing(a) ( Nomen1(a,des(a))                                                    Theorem of designate

      (9) Nomen1(a,des(a))                                                                                MP (1), (8)

    (10) Nomen1(a,des(a)) ( (xNom(a,x,des(a))                                          LD13., LD123.

    (11) (xNom(a,x,des(a))                                                                             MP (9), (10)

    (12) Nom(a,x0,des(a))                                                                            (x-omitting (11)

    (13) Nom(a,x0,des(a)) ( des(a) ( x0                         Second theorem of name modality

    (14) des(a) ( x0                                                                                          MP (12), (13)

    (15) des(a) ( x0 ( des(a) ( des(a)                                            D(1., Lemma 3, 

                                                                        Theorem of modus and identical mode equivalence

    (16) des(a) ( des(a)                                                                              MP (14), (15)

    (17) des(a) ( des(a) ( Nomen1(a,des(a))                                           (-adding (9), (16)

    (18) des(a) ( des(a) ( Nomen1(a,des(a)) ( ex(a) (* des(a)                     DLEx2.2.

    (19) ex(a) (* des(a)                                                                              MP (17), (18)

    (20) Set(ex(a))                                                                              Theorem of designate

    (21) Set(ex(a)) ( ex(a) (* des(a)                                                        (-adding (19), (20)

    (22) Set(ex(a)) ( ex(a) (* des(a) ( des(a) ( ex(a)                                       DSET3.

    (23) des(a) ( ex(a)                                                                                MP (21), (22)

    (24) des(a) ( ex(a) ( des(a) ( ex(b)                             substitution of des(a) for x in (7)

    (25) des(a) ( ex(b)                                                                                 MP (23), (24)

        2. eSing(a) ( Nomen(b) ( [des(a) ( ex(b) ( ex(a) ( ex(b)]

          (1) eSing(a)                                                                                              1st premise

          (2) Nomen(b)                                                                                           2nd premise

          (3) des(a) ( ex(b)                                                                                     3rd premise

    +1  (4) x ( ex(a)                                                                                            premise

          (5) x ( ex(a) ( Set(ex(a)) ( ex(a) (* x                                                       DSET3.

          (6) Set(ex(a)) ( ex(a) (* x                                                                       MP (4), (5)

          (7) ex(a) (* x                                                                                         (-omitting (6)

          (8) ex(a) (* x ( Model(x)  ( Nomen1(x,a)                                                DLEx2.2.

          (9) Model(x)  ( Nomen1(x,a)                                                                   MP (7), (8)

        (10) Nomen1(x,a)                                                                                     (-omitting (9)

        (11) Nomen1(a,x) ( x = des(a)                                                                     DLEx1

        (12) x = des(a)                                                                                           MP (10), (11)

        (13) des(a) ( ex(b) ( x = des(a)                                                           (-adding (3), (12)

        (14) des(a) ( ex(b) ( x = des(a) ( x ( ex(b)             Extensional theorem of substitution*

        (15) x ( ex(b)                                                                                            MP (13), (14)

  -1  (16) x ( ex(a) ( x ( ex(b)                                                         omitting of premise (4)

       (17) (x(x ( ex(a) ( x ( ex(b))                                                              (x-adding (16)

       (18) Set(ex(a))                                                                         Theorem of extensional

       (19) Set(ex(b))                                                                         Theorem of extensional

       (20) Set(ex(a)) ( Set(ex(b))                                                       (-adding (18), (19)

       (21) Set(ex(a)) ( Set(ex(b)) ( (x(x ( ex(a) ( x ( ex(b))        (-adding (17), (20)      

       (22) Set(ex(a)) ( Set(ex(b)) ( (x(x ( ex(a) ( x ( ex(b)) ( ex(a) ( ex(b)  DSET4.

       (23) ex(a) ( ex(b)                                                                           MP (21), (22)

Lesniewski uses Ontological Definitions in the following form:

(LD) a (L C ( a (L a  (  P(a),

where a is nomen, C is definable nomen and P is property (i.e., functor of the type S/N). 

We have that if a is nomen, then (a (L a ( AtSet(ex(a))) ( ObSet(ex(a)) ( (ex(a) ( ex(a))) accordingly Theorem of extensional criterion of L-functor. However ex(a) ( ex(a) is equivalent to Set(ex(a)), and this is Theorem of extensional. Therefore we obtain that a (L a ( AtSet(ex(a))) ( ObSet(ex(a)). Hence we have from (LD) that 

AtSet(ex(a))) ( ObSet(ex(C)) ( (ex(a) ( ex(C)) ( AtSet(ex(a))) ( ObSet(ex(a)) ( P(a)

From here one can be concluded that

AtSet(ex(a))) ( ObSet(ex(C)) ( (ex(a) ( ex(C) ( P(a))

Since ex(a) ( ex(C) is equivalent to des(a) ( ex(C) in accordance with Theorem of membership, we have 

(LD+) AtSet(ex(a))) ( ObSet(ex(C)) ( (des(a) ( ex(C) ( P(a))

I would like to note that a is nomen, whereas P(a) is assertion of property P in relation to designate of nomen a, not to nomen a as such. This can be explained by the special type of predication in L-Ontology. Although Lesniewski uses predicates for names, he understands them as predicates for designates. This situation can be expressed by the following way. Let us define that

DLP. If a is nomen, then   P<a> ( P(des(a)) 

P<a> is a special type of predication which is used by Lesniewski. Then it is more exactly when LD+ is expressed itself in the following form:

(LD*) AtSet(ex(a))) ( ObSet(ex(C)) ( (des(a) ( ex(C) ( P<a>))

Finally we obtain:

(LD**) AtSet(ex(a))) ( ObSet(ex(C)) ( (des(a) ( ex(C) ( P(des(a))))

We can see that LD** is the kind of definition like set-theoretical one. Therefore Lesniewski uses Ontological definitions in accordance with set-theoretical, or “model” in my sense, scheme of definitions, though this is masked by operations of names. This is why Lesniewski does not need some additional condition for property P in the case of his version of Ontological Definitions. Whereas Modal Ontology, where three kinds of Ontological Definitions – modal, modus and model – are used, needs condition of modality and modusness of properties in the case of modal and modus definitions. 

Now I shall show possibility of deduction of Axiom of Ontology by Lesniewski.

TL1. a (L b ( (c(c (L a)

Proof.  (1) a (L b                                                                                        premise

            (2) a (L b ( eSing(a) ( ObNomen(b) ( (a (eN b)                            DL(
            (3) eSing(a) ( ObNomen(b) ( (a (eN b)                                      MP (1), (2)

            (4) Nomen(a) ( ObNomen(b) ( (a (eN b) ( ObNomen(a)  Theorem of object transfer

            (5) eSing(a)                                                                              (-omitting (3)

            (6) eSing(a) ( Nomen(a)                                                                 LDV.3.

            (7) Nomen(a)                                                                                MP (5), (6)

            (8) ObNomen(b) ( (a (eN b)                                                     (-omitting (3)

            (9) Nomen(a) ( ObNomen(b) ( (a (eN b)                                (-adding (7), (8)

          (10) ObNomen(a)                                                                       MP (4), (9)

          (11) (x(Nomen1(a,x) ( Nomen1(a,x))                         Theorem of functional calculus                 

          (12) (x(Nomen1(a,x) ( Nomen1(a,x)) ( a (eN a                              LDI13.

          (13) a (eN a                                                                                  MP (11), (12)

          (14) eSing(a) ( ObNomen(a) ( (a (eN a)                                (-adding (5), (10), (13)

          (15) {eSing(c) ( ObNomen(a) ( (c (eN a)}c[a]               representation of (14) as result 

                                                                                                            of substitution c for a

          (16) (c(eSing(c) ( ObNomen(a) ( (c (eN a))                            (c-adding (15)

          (17) eSing(c0) ( ObNomen(a) ( (c0 (eN a)                                (c-omitting (16)

          (18) eSing(c0) ( ObNomen(a) ( (c0 (eN a) ( c0 (L a                        DL(
          (19) c0 (L a                                                                                   MP (17), (18)

          (20) (c(c (L a)                                                                             (c-adding (19)

Theorem of extensional transitivity. (a (eN b) ( (b (eN c)  ( a (eN c

Proof.  (1) a (eN b                                                                                      1st premise

            (2) b (eN c                                                                                      2nd premise

            (3) a (eN b ( (x(Nomen1(a,x) ( Nomen1(b,x))                             LDI13.

            (4) (x(Nomen1(a,x) ( Nomen1(b,x))                                          MP (1), (3)

            (5) Nomen1(a,x) ( Nomen1(b,x)                                           (x-omitting (4)

            (6) b (eN c ( (x(Nomen1(b,x) ( Nomen1(c,x))                               LDI13.

            (7) (x(Nomen1(b,x) ( Nomen1(c,x))                                          MP (2), (6)

            (8) Nomen1(b,x) ( Nomen1(c,x)                                           (x-omitting (7)

     +1   (9) Nomen1(a,x)                                                                          premise

          (10) Nomen1(b,x)                                                                          MP (5), (9)

          (11) Nomen1(c,x)                                                                          MP (7), (10)

     -1  (12) Nomen1(a,x) ( Nomen1(c,x)                                      omitting of premise (9)

           (13) (x(Nomen1(a,x) ( Nomen1(c,x))                                     (x-adding (12)

           (14) (x(Nomen1(a,x) ( Nomen1(c,x)) ( a (eN c                           LDI13.

           (15) a (eN c                                                                                    MP (13), (14)

TL2. a (L b ( (c(c (L a ( c (L b)

Proof.  (1) a (L b                                                                                        premise

            (2) a (L b ( eSing(a) ( ObNomen(b) ( (a (eN b)                            DL(
            (3) eSing(a) ( ObNomen(b) ( (a (eN b)                                      MP (1), (2)

      +1  (4) c (L a                                                                                         premise

            (5) c (L a ( eSing(c) ( ObNomen(a) ( (c (eN a)                            DL(
            (6) eSing(c) ( ObNomen(a) ( (c (eN a)                                      MP (4), (5)

            (7) a (eN b                                                                              (-omitting (2)

            (8) c (eN a                                                                              (-omitting (5)

            (9) (c (eN a) ( (a (eN b)                                                         (-adding (7), (8)

          (10) (c (eN a) ( (a (eN b)  ( c (eN b                    Theorem of extensional transitivity

          (11) c (eN b                                                                               MP (9), (10)

          (12) ObNomen(b)                                                                    (-omitting (3)

          (13) eSing(c)                                                                            (-omitting (6)

          (14) eSing(c) ( ObNomen(b) ( c (eN b                             (-adding (11), (12), (13)

          (15) eSing(c) ( ObNomen(b) ( c (eN b ( c (L b                              DL(
          (16) c (L b                                                                                      MP (14), (15)

      -1 (17) c (L a ( c (L b                                                              omitting of premise (4)

          (18) (c(c (L a ( c (L b)                                                               (c-adding (17)

Theorem of extensional singularity. eSing(a) ( eSing(b) ( (a (eN b) ( c =eN b

Proof.  (1) eSing(a)                                                                                             1st premise

            (2) eSing(b)                                                                                             2nd premise

            (3) a (eN b                                                                                                3rd premise

       +1 (4) (x(Nomen1(b,x) ( (Nomen1(a,x))                                                      premise

            (5) Nomen1(b,x0) ( (Nomen1(a,x0)                                                     (x-omitting (4)

            (6) eSing(b) ( (y(z(Nomen1(b,y)(Nomen1(b,z) ( y=z)                      LDV.3.

            (7) (y(z(Nomen1(b,y)(Nomen1(b,z) ( y=z)                                     MP (2), (6)

            (8) Nomen1(b,y)(Nomen1(b,z) ( y=z                                              (y(z-omitting (7)

            (9) Nomen1(b,y)(Nomen1(b,x0) ( y=x0                           substitution of x0 for z in (8)                     

          (10) eSing(a) ( Nomen(a)                                                                          LDV.3.

          (11) Nomen(a)                                                                                     MP (1), (10)

          (12) Nomen(a) ( (zNomen1(a,z)                                              LD1., LD13., LD123.

          (13) (zNomen1(a,z)                                                                              MP (11), (12)

          (14) Nomen1(a,z0)                                                                               (z-omitting (13) 

          (15) a (eN b ( (z(Nomen1(a,z) ( Nomen1(b,z))                                    LDI13.

          (16) (z(Nomen1(a,z) ( Nomen1(b,z))                                                  MP (3), (15)

          (17) Nomen1(a,z) ( Nomen1(b,z)                                                       (z-omitting (16)

          (18) Nomen1(a,z0) ( Nomen1(b,z0)                                   substitution of z0 for z in (17)         

          (19) Nomen1(b,z0)                                                                              MP (14), (18)

          (20) Nomen1(b,z0)(Nomen1(b,x0) ( z0=x0                      substitution of z0 for y in (9)

          (21) Nomen1(b,x0)                                                                        (-omitting (5)

          (22) Nomen1(b,z0)(Nomen1(b,x0)                                                (-adding (19), (21)

    (23) z0=x0                                                                                             MP (20), (22)

    (24) (Nomen1(a,x0)                                                                       (-omitting (5)

    (25) (Nomen1(a,x0) ( z0=x0                                                          (-adding (23), (24)

    (26) (Nomen1(a,x0) ( z0=x0 ( (Nomen1(a,z0)      Extensional theorem of substitution*

    (27) (Nomen1(a,z0)                                                                         MP (25), (26)

    (28) Nomen1(a,z0) ( (Nomen1(a,z0)                                             (-adding (14), (27)

-1 (29) (x(Nomen1(b,x) ( (Nomen1(a,x)) ( A((A                     omitting of premise (4)

                                                                                                              [here A is (14)]

    (30) ((x(Nomen1(b,x) ( (Nomen1(a,x))                                     consequence of (29)

    (31) (x(Nomen1(b,x) ( Nomen1(a,x))                                       consequence of (30)

          (32) Nomen1(b,x) ( Nomen1(a,x)                                              (x-omitting (31)

          (33) a (eN b ( (x(Nomen1(a,x) ( Nomen1(b,x))                                    LDI13.

          (34) (x(Nomen1(a,x) ( Nomen1(b,x))                                                  MP (3), (33)

          (35) Nomen1(a,x) ( Nomen1(b,x)                                                       (x-omitting (34)

          (36) (Nomen1(b,x) ( Nomen1(a,x))((Nomen1(a,x) ( Nomen1(b,x)) (-adding (32), (35)

          (37) Nomen1(a,x) ( Nomen1(b,x)                                                 consequence of (36)

          (38) (x(Nomen1(a,x) ( Nomen1(b,x))                                               (x-adding (37)

          (39) eSing(a) ( Nomen(a)                                                                      LDV.3.

          (40) Nomen(a)                                                                                    MP (1), (39)

          (41) eSing(b) ( Nomen(b)                                                                      LDV.3.

          (42) Nomen(b)                                                                                    MP (2), (41)

          (43) (x(Nomen1(a,x) ( Nomen1(b,x)) ( Nomen(a) ( Nomen(b) (-adding(38),(40),(42)

          (44) (x(Nomen1(a,x) ( Nomen1(b,x)) ( Nomen(a) ( Nomen(b) (
                                                                                   a =eN b                               LDSE13.

          (45) a =eN b                                                                                          MP (43), (44)

Theorem of extensional transitivity. (a =eN b) ( (b =eN c)  (  a =eN c

Proof.  (1) a =eN b                                                                                       1st premise

            (2) b =eN c                                                                                       2nd premise

            (3) a =eN b ( (x(Nomen1(a,x) ( Nomen1(b,x)) ( Nomen(a) ( Nomen(b) LDSE13.

            (4) b =eN c ( (x(Nomen1(b,x) ( Nomen1(c,x)) ( Nomen(b) ( Nomen(c) LDSE13.

            (5) (x(Nomen1(a,x) ( Nomen1(b,x)) ( Nomen(a) ( Nomen(b)     MP (1), (3)

            (6) (x(Nomen1(b,x) ( Nomen1(c,x)) ( Nomen(b) ( Nomen(c)     MP (2), (4)

            (7) (x(Nomen1(a,x) ( Nomen1(b,x))                                         (-omitting (5)

            (8) Nomen1(a,x) ( Nomen1(b,x)                                                 (x-omitting (7)

            (9) (x(Nomen1(b,x) ( Nomen1(c,x))                                         (-omitting (6)

          (10) Nomen1(b,x) ( Nomen1(c,x)                                                 (x-omitting (9)

          (11) Nomen1(a,x) ( Nomen1(c,x)                                  consequence of (8), (10)

          (12) (x(Nomen1(a,x) ( Nomen1(c,x))                           (x-adding (11)

          (13) Nomen(a)                                                                (-omitting (5)

          (14) Nomen(c)                                                                (-omitting (6)

          (15) (x(Nomen1(a,x) ( Nomen1(c,x))(Nomen(a)(Nomen(c) (-adding (12), (13), (14)

          (16) (x(Nomen1(a,x) ( Nomen1(c,x))(Nomen(a)(Nomen(c) ( 

                                                                                               a =eN c              LDSE13.

          (17) a =eN c                                                                         MP (15), (16)

TL3. a (L b ( (c(d((c (L a  ( d (L a)  ( c (L d)

Proof.  (1) a (L b                                                                                        premise

            (2) a (L b ( eSing(a) ( ObNomen(b) ( (a (eN b)                            DL(
            (3) eSing(a) ( ObNomen(b) ( (a (eN b)                                      MP (1), (2)

       +1 (4) c (L a  ( d (L a                                                                         premise

            (5) c (L a                                                                                      (-omitting (4)

            (6) c (L a ( eSing(c) ( ObNomen(a) ( (c (eN a)                            DL(
            (7) eSing(c) ( ObNomen(a) ( (c (eN a)                                      MP (5), (6)

            (8) d (L a                                                                                      (-omitting (4)

            (9) d (L a ( eSing(d) ( ObNomen(a) ( (d (eN a)                            DL(
          (10) eSing(d) ( ObNomen(a) ( (d (eN a)                                      MP (8), (9)

          (11) eSing(d) ( Nomen(d)                                                                LDV.3.

          (12) eSing(d)                                                                                  (-omitting (10)

          (13) Nomen(d)                                                                                MP (11), (12)

          (14) ObNomen(a) ( (d (eN a)                                                         (-omitting (10)

          (15) Nomen(d) ( ObNomen(a) ( (d (eN a)                                    (-adding (13), (14)

          (16) Nomen(d) ( ObNomen(a) ( (d (eN a) ( ObNomen(d) Theorem of object transfer

          (17) ObNomen(d)                                                                        MP (15), (16)

          (18) eSing(c)                                                                                  (-omitting (7)

          (19) c (eN a                                                                                     (-omitting (7)

          (20) eSing(a)                                                                                  (-omitting (3)

          (21) eSing(c) ( eSing(a) ( c (eN a ( c =eN a             Theorem of extensional singularity

          (22) eSing(c) ( eSing(a) ( c (eN a                                       (-adding (18), (19), (20)

          (23) c =eN a                                                                                 MP (21), (22)

          (24) eSing(d) ( eSing(a) ( d (eN a ( d =eN a            Theorem of extensional singularity

          (25) d (eN a                                                                                    (-omitting (14)

          (25) eSing(d) ( eSing(a) ( d (eN a                                       (-adding (12), (20), (25)

          (26) d =eN a                                                                                 MP (24), (25)

          (27) c =eN a  (  d =eN a                                                                (-adding (23), (26)

          (28) c =eN a  (  d =eN a  ( c =eN d                      Theorem of extensional transitivity

          (29) c =eN d                                                                                   MP (27), (28)

          (30) c =eN d  ( c (eN d                                                                  LDSE13., LDI13.

          (31) c (eN d                                                                                   MP (29), (30)

          (32) eSing(c) ( ObNomen(d) ( c (eN d                                   (-adding (17), (18), (31)

          (33) eSing(c) ( ObNomen(d) ( c (eN d  (  c (L d                               DL(
          (34) c (L d                                                                                        MP (32), (33)

     -1  (35) (c (L a  ( d (L a)  (  c (L d                                                omitting of premise (4)

          (36) (c(d((c (L a  ( d (L a)  (  c (L d)                                         (c(d-adding (35)

Theorem of set self-inclusion. Set(a) ( a ( a

Proof.  (1) Set(a)                                                                          premise

            (2) (x(x ( a  ( x ( a)                      Theorem of  functional calculus

            (3) Set(a) ( (x(x ( a  ( x ( a)                      (-adding (1), (2)

            (4) Set(a) ( (x(x ( a  ( x ( a) ( a ( a                 DSET4.

            (5) a ( a                                                              MP (3), (4)

Theorem of atomic inclusion. AtSet(a) ( b ( a ( (x(x ( b)  (  AtSet(b)

Proof.  (1) AtSet(a)                                                                                            1st premise

            (2) b ( a                                                                                                 2nd premise

            (3) (x(x ( b)                                                                                          3rd premise

      +1  (4) x ( b ( y ( b                                                                                   premise

            (5) b ( a ( (z(z ( b ( z ( a)                                                                 DSET4.

            (6) (z(z ( b ( z ( a)                                                                             MP (2), (5)

            (7) z ( b ( z ( a                                                                             (z-omitting (6)

            (8) x ( b ( x ( a                                                              substitution of x for z in (7)

            (9) x ( b                                                                                           (-omitting (4)

          (10) x ( a                                                                                                  MP (8), (9)

By the same way ((4)-(10)) one can prove that

          (11) y ( a

          (12) x ( a ( y ( a                                                                            (-adding (10), (11)

          (13) AtSet(a) ( (x(y(x ( a ( y ( a ( x=y)                                            LDV.3.

          (14) (x(y(x ( a ( y ( a ( x=y)                                                           MP (1), (13)

          (15) x ( a ( y ( a ( x=y                                                                (x(y-omitting (14)      

          (16) x=y                                                                                                  MP (12), (15)

    -1   (17) x ( b ( y ( b ( x=y                                                        omitting of premise (4)

          (18) (x(y(x ( b ( y ( b ( x=y)                                                     (x(y-adding (17)

          (19) (x(x ( b) ( (x(y(x ( b ( y ( b ( x=y)                               (-adding (3), (18)

          (20) (x(x ( b) ( (x(y(x ( b ( y ( b ( x=y) ( AtSet(b)                          DSET6.

          (21) AtSet(b)                                                                                         MP (19), (20)

Second theorem of object transfer. (x(x ( a) ( ObSet(b) ( a ( b ( ObSet(a)

Proof.  (1) ObSet(b)                                                                                         1st premise

            (2) a ( b                                                                                               2nd premise

            (3) (x(x ( a)                                                                                         3rd premise

       +1 (4) ( ObSet(a)                                                                                        premise

            (5) (x(x ( a) ( (x(x ( a ( Ob(x)) ( ObSet(a)                                  DLEx3.

            (6) ( ObSet(a) ( ((x(x ( a) ( ((x(x ( a ( Ob(x))                   consequence of (5)

            (7) ((x(x ( a) ( ((x(x ( a ( Ob(x))                                               MP (4), (6)

            (8) ((x(x ( a ( Ob(x))                                                          consequence of (3), (7)

            (9) (x(x ( a ( (Ob(x))                                                           consequence of (8)

          (10) x0 ( a ( (Ob(x0)                                                                     (x-omitting (9)

          (11) x0 ( a                                                                                       (-omitting (10)

          (12) x0 ( b                                                                               consequence of (2), (11)                   

          (13) (Ob(x0)                                                                                     (-omitting (10)

          (14) x0 ( b ( (Ob(x0)                                                                      (-adding (12), (13)

          (15) (x(x ( b ( (Ob(x))                                                              (x-adding (14)

          (16) ((x(x ( b ( Ob(x))                                                   consequence of (15)

          (17) ObSet(b) ( (x(x ( b ( Ob(x))                                              DLEx3.

          (18) (x(x ( b ( Ob(x))                                                               MP (1), (17)

          (19) (x(x ( b ( Ob(x)) ( ((x(x ( b ( Ob(x))                 (-adding (16), (18)

     -1  (20) ( ObSet(a) ( A((A                                   omitting of premise (4) [here A is (18)]

          (21) ObSet(a)                                                                       consequence of (20)

Theorem of extensional coordination. If a is nomen, then x ( ex(a) ( Nomen1(a,x) ( Des(x)

Proof.  (1) x ( ex(a)                                                                                      premise

            (2) x ( ex(a) ( ex(a) (* x                                                                 DSET3., D(*.

            (3) ex(a) (* x                                                                                     MP (1), (2)

            (4) ex(a) (* x  ( Nomen1(a,x)                                                           DLEx2.2.

            (5) Nomen1(a,x)                                                                                 MP (3), (4)

            (6) Nomen1(a,x) ( Des(x)                                                                 LD13., LD3.

            (7) Des(x)                                                                                           MP (5), (6)

            (8) Nomen1(a,x) ( Des(x)                                                                  (-adding (5), (7)

Theorem of proper name. Nom(a,b,b) ( Ob(b) ( eSing(a)

Proof.  (1) Nom(a,b,b)                                                                                    1st premise

            (2) Ob(b)                                                                                             2nd premise

       +1 (3) Nomen1(a,x) ( Nomen1(a,y)                                                         premise

            (4) Nomen1(a,x)                                                                                 (-omitting (3)

            (5) Nomen1(a,x) ( (zNom(a,z,x)                                                      LD13., LD123.

            (6) (zNom(a,z,x)                                                                                MP (4), (5)

            (7) Nom(a,z0,x)                                                                                   (z-omitting (6)

            (8) Nom(a,z0,x) ( Nomen2(a,z0)                                                        LD123., LD12.

            (9) Nomen2(a,z0)                                                                                 MP (7), (8)

          (10) Nomen2(a,z0) ( z0 = con(a)                                                          DLIn

          (11) z0 = con(a)                                                                                     MP (9), (10)

By the same way ((3)-(11)) one can prove that 

          (12) Nom(a,t0,y)

          and

          (13) t0 = con(a)

          (14) Nom(a,b,b) ( Nomen2(a,b)                                                         LD123., LD12.

          (15) Nomen2(a,b)                                                                                 MP (1), (14)

          (16) Nomen2(a,b) ( b = con(a)                                                            DLIn

          (17) b = con(a)                                                                                     MP (15), (16)

          (18) z0 = con(a) ( b = con(a)                                                            (-adding (11), (17)

          (19) z0 = con(a) ( b = con(a) ( z0 = b                    Theorem of modus equivalence (iii)

          (20) z0 = b                                                                                            MP (18), (19)

By the same way ((18)-(20)) we can prove that

          (21) t0 = b

          (22) Nom(a,z0,x) ( x ( z0                                        Second theorem of name modality

          (23) x ( z0                                                                                              MP (7), (22)

          (24) Nom(a,t0,y) ( y ( t0                                                   Second theorem of name modality

          (25) y ( t0                                                                                               MP (12), (24)

          (26) x ( z0 ( z0 = b                                                                            (-adding (20), (23)

          (27) x ( z0 ( z0 = b  ( x ( b                                  Extensional theorem of substitution*

          (28) x ( b                                                                                                MP (26), (27)

          (29) y ( t0 ( t0 = b                                                                            (-adding (21), (25)

          (30) y ( t0 ( t0 = b  ( y ( b                                  Extensional theorem of substitution*

          (31) y ( b                                                                                                MP (29), (30)

          (32) Ob(b) ( UModus(b)                                                                             LA4

          (33) UModus(b)                                                                           MP (2), (32)

          (34) UModus(b) ( (v(v ( b ( b ( v)                                            DU., D(1.

          (35) (v(v ( b ( b ( v)                                                                  MP (33), (34)

          (36) v ( b ( b ( v                                                                        (v-omitting (35)

          (37) v ( b (  v ( b ( b ( v                                                        consequence of (36)

          (38) v ( b ( b ( v ( v = b                                                             DE, D(1.

          (39) v ( b ( v = b                                                                consequence of (37), (38)

          (40) x ( b ( x = b                                                            substitution of x for v in (39)

          (41) x = b                                                                                       MP (28), (40)

          (42) y ( b ( y = b                                                            substitution of y for v in (39)

          (43) y = b                                                                                       MP (31), (42)

          (44) x = b ( y = b                                                                       (-adding (41), (43)

          (45) x = b ( y = b  ( x = y                                  Theorem of modus equivalence (iii)

          (46) x = y                                                                                        MP (44), (45)

   -1    (47) Nomen1(a,x) ( Nomen1(a,y) ( x = y                       omitting of premise (3)

          (48) (x(y(Nomen1(a,x) ( Nomen1(a,y) ( x = y)                (x(y-adding (47)

          (49) Nom(a,b,b) ( Nomen(a)                                                  LD123., LD1.

          (50) Nomen(a)                                                                          MP (1), (49)

          (51) Nomen(a) ( (x(y(Nomen1(a,x) ( Nomen1(a,y) ( x = y) (-adding (48), (50)

          (52) Nomen(a) ( (x(y(Nomen1(a,x) ( Nomen1(a,y) ( x = y) (
                                                                                                     eSing(a)   LDV.3.

          (53) eSing(a)                                                                             MP (51), (52)

Theorem of set inclusion. If  a, b and c are nomens, then (c[eSing(c) ( (des(c) ( ex(a) ( des(c) ( ex(b))](ObSet(ex(a)) ( ex(a) ( ex(b)                           

Proof.  (1) (c[eSing(c) ( (des(c) ( ex(a) ( des(c) ( ex(b))]                                 1st premise

            (2) ObSet(ex(a))                                                                                            2nd premise

            (3) eSing(c) ( (des(c) ( ex(a) ( des(c) ( ex(b))                                   (c-omitting (1)

            (4) ObSet(ex(a)) ( ObNomen(a)                                              Theorem of objectness

            (5) ObNomen(a)                                                                                      MP (2), (4)

            (6) ObNomen(a) ( (x(Nomen1(a,x) ( Ob(x))                                       LDV.10.

            (7) (x(Nomen1(a,x) ( Ob(x))                                                                 MP (5), (6)

            (8) Nomen1(a,x) ( Ob(x)                                                                    (x-omitting (7)

       +1 (9) x ( ex(a)                                                                                             premise

          (10) x ( ex(a) ( Nomen1(a,x) ( Des(x)                Theorem of extensional coordination

          (11) Nomen1(a,x) ( Des(x)                                                                        MP (9), (10)

          (12) Des(x)                                                                                              (-omitting (11)

          (13) Des(x) ( (yNom(y,x,x)                                                                       LA5

          (14) (yNom(y,x,x)                                                                                      MP (12), (13)

          (15) Nom(y0,x,x)                                                                                   (y-omitting (14)

          (16) Nomen1(a,x)                                                                                     (-omitting (11)

          (17) Ob(x)                                                                                                  MP (8), (16)

          (18) Nom(y0,x,x) ( Ob(x)                                                                  (-adding (15), (17)

          (19) Nom(y0,x,x) ( Ob(x) ( eSing(y0)                                     Theorem of proper name

          (20) eSing(y0)                                                                                        MP (18), (19)

          (21) eSing(y0) ( (des(y0) ( ex(a) ( des(y0) ( ex(b))    substitution of y0 for c in (3)          

          (22) des(y0) ( ex(a) ( des(y0) ( ex(b)                                                 MP (20), (21)

          (23) Nom(y0,x,x) ( Nomen1(y0,x)                                               LD123., LD13.

          (24) Nomen1(y0,x)                                                                         MP (15), (23)

          (25) Nomen1(y0,x) ( x = des(y0)                                                  DLEx1.

          (26) x = des(y0)                                                                              MP (24), (25)

          (27) x = des(y0) ( (des(y0) ( ex(a) ( des(y0) ( ex(b))             (-adding (22), (26)

          (28) x = des(y0) ( (des(y0) ( ex(a) ( des(y0) ( ex(b)) ( 

                                            x ( ex(a) ( x( ex(b)          Extensional theorem of substitution*

          (29) x ( ex(a) ( x( ex(b)                                                              MP (27), (28)

          (30) x( ex(b)                                                                                  MP (9), (29)

    -1  (31) x ( ex(a) ( x( ex(b)                                                    omitting of premise (9)

          (32) (x(x ( ex(a) ( x( ex(b))                                                    (x-adding (31)

          (33) Set(ex(a))                                                                        Theorem of extensional

          (34) Set(ex(b))                                                                        Theorem of extensional

          (35) Set(ex(a)) ( Set(ex(b)) ( (x(x ( ex(a) ( x( ex(b))      (-adding (32), (33), (34)

          (36) Set(ex(a)) ( Set(ex(b)) ( (x(x ( ex(a) ( x( ex(b)) ( ex(a) ( ex(b)  DSET4.

          (37) ex(a) ( ex(b)                                                                            MP (35), (36)

Theorem of sufficient criterion of L-axiom. If a and b are nomens, c and d are nomen variables, then (c(c (L a)((c(c (L a ( c (L b)((c(d((c (L a  ( d (L a)  (  c (L d) ( a (L b

Proof.  (1) (c(c (L a)                                                                                             1st premise

            (2) (c(c (L a ( c (L b)                                                                              2nd premise

            (3) (c(d((c (L a  ( d (L a)  (  c (L d)                                                      3rd premise

            (4) c0 (L a                                                                                               (c-omitting (1)

            (5) c0 (L a ( AtSet(ex(c0)) ( ObSet(ex(a)) ( ex(c) ( ex(a)   Theorem of e-criterion 

                                                                                                                          of L-functor              

            (6) AtSet(ex(c0)) ( ObSet(ex(a)) ( ex(c0) ( ex(a)                               MP (4), (5)

            (7) c (L a ( c (L b                                                                                 (c-omitting (2)

            (8) AtSet(ex(c)) ( ObSet(ex(a)) ( ex(c) ( ex(a)  ( 

                    AtSet(ex(c)) ( ObSet(ex(b)) ( ex(c) ( ex(b)   consequence of (7) and 

                                                                                      Theorem of e-criterion of L-functor

            (9) (c (L a  ( d (L a)  (  c (L d                                          (c(d-omitting (3)

          (10) [AtSet(ex(c)) ( ObSet(ex(a)) ( ex(c) ( ex(a)] ( [AtSet(ex(d)) ( ObSet(ex(a)) ( ex(d) ( ex(a)] ( AtSet(ex(c)) ( ObSet(ex(d)) ( ex(c) ( ex(d)    consequence of (9) and 

                                                                                          Theorem of e-criterion of L-functor

          (11) ObSet(ex(a))                                                               (-omitting (6)

          (12) AtSet(ex(c)) ( ex(c) ( ex(a)  ( 

                                                  ObSet(ex(b)) ( ex(c) ( ex(b)    consequence of (8), (11)

          (13) [AtSet(ex(c)) ( ex(c) ( ex(a)] ( [AtSet(ex(d)) ( ex(d) ( ex(a)] ( AtSet(ex(c)) ( ObSet(ex(d)) ( ex(c) ( ex(d)                                               consequence of (10), (11)

          (14) [AtSet(ex(c)) ( ex(c) ( ex(a)] ( [AtSet(ex(d)) ( ex(d) ( ex(a)] ( ObSet(ex(d)) ( ex(c) ( ex(d)                                                                         consequence of (13)

          (15) [AtSet(ex(c)) ( AtSet(ex(d)) ( (ex(c) ( ex(a)) ( (ex(d) ( ex(a))] ( ObSet(ex(d)) ( ex(c) ( ex(d)                                                                         consequence of (14)

          (16) [AtSet(ex(c)) ( AtSet(ex(c0)) ( (ex(c) ( ex(a)) ( (ex(c0) ( ex(a))] ( ObSet(ex(c0)) ( ex(c) ( ex(d)                                       substitution of c0 for d in (15)                                                        

          (17) [AtSet(ex(c)) ( AtSet(ex(c0)) ( (ex(c) ( ex(a)) ( (ex(c0) ( ex(a))] ( 

                                                                                 [ex(c) ( ex(c0)]          consequence of (16)

          (18) ex(c0) ( ex(a)                                                                              (-omitting (6)

          (19) [AtSet(ex(c)) ( AtSet(ex(c0)) ( (ex(c) ( ex(a))] ( 

                                                                                 [ex(c) ( ex(c0)] consequence of (17), (18)

          (20) AtSet(ex(c0))                                                                               (-omitting (6)

          (21) [AtSet(ex(c)) ( (ex(c) ( ex(a))] ( [ex(c) ( ex(c0)]         consequence of (19), (20)

          (22) AtSet(ex(c)) ( [(ex(c) ( ex(a)) ( ex(c) ( ex(c0)]            consequence of  (21)

          (23) AtSet(ex(c)) ( 

               [AtSet(ex(c)) ( (des(c) ( ex(a) ( des(c) ( ex(c0))]    Theorem of membership,

                                                                                                 Theorem of singularity and (22)

          (24) (c(AtSet(ex(c))) ( 

                        (c[AtSet(ex(c)) ( (des(c) ( ex(a) ( des(c) ( ex(c0))]  consequence of (23)

          (25) (c(AtSet(ex(c))) ( 

(c[AtSet(ex(c)) ( (des(c) ( ex(a) ( des(c) ( ex(c0))](ObSet(ex(a)) consequence of (11), (24)

          (26) (c[AtSet(ex(c)) ( (des(c) ( ex(a) ( des(c) ( ex(c0))](ObSet(ex(a)) ( 

                                  ex(a) ( ex(c0)                                              Theorem of set inclusion

          (27) (c(AtSet(ex(c))) ( ex(a) ( ex(c0)                            consequence of (25), (26)

          (28) (c(AtSet(ex(c))) ( ex(a) ( ex(c0)  ( 

                                              AtSet(ex(c0)) ( ex(a) ( ex(c0)           consequence of (27)

          (29) AtSet(ex(c0)) ( ex(a) ( ex(c0)                                        MP (27), (28)

          (30) ex(a) ( ex(c0)                                                                  MP (20), (29)

          (31) AtSet(ex(c0)) ( ex(a) ( ex(c0) ( (x(x ( ex(a))  (  

                                                                 AtSet(ex(a))           Theorem of atomic inclusion

          (32) ObSet(ex(a)) ( (x(x ( ex(a))                                                DLEx3.

          (33) (x(x ( ex(a))                                                                      MP (11), (32)

          (34) AtSet(ex(c0)) ( ex(a) ( ex(c0) ( (x(x ( ex(a))      (-adding (20), (30), (33)

          (35) AtSet(ex(a))                                                                        MP (31), (34)

          (36) AtSet(ex(a)) ( ex(a) ( ex(a) ( 

                                     ObSet(ex(b)) ( ex(a) ( ex(b)     substitution of a for c in (12)

          (37) Set(ex(a)) ( ex(a) ( ex(a)                              Theorem of set self-inclusion

          (38) Set(ex(a))                                                          Theorem of extensional

          (39) ex(a) ( ex(a)                                                              MP (37), (38)

          (40) AtSet(ex(a)) ( ex(a) ( ex(a)                                  (-adding (35), (39)

          (41) ObSet(ex(b)) ( ex(a) ( ex(b)                                    MP (36), (40)

          (42) AtSet(ex(a)) ( ObSet(ex(b)) ( ex(a) ( ex(b)        (-adding (35), (41)

          (43) AtSet(ex(a)) ( ObSet(ex(b)) ( ex(a) ( ex(b) ( a (L b  Theorem of e-criterion 

                                                                                                                 of L-functor

          (44) a (L b                                                                           MP (42), (43)

Now we can prove the following

Theorem of L-axiom. If a and b are nomens, c and d are nomen variables, then a (L b ( (c(c (L a)((c(c (L a ( c (L b)((c(d((c (L a  ( d (L a)  (  c (L d) 

Proof.  1. a (L b ( (c(c (L a)((c(c (L a ( c (L b)((c(d((c (L a  ( d (L a)  (  c (L d)

        (1) a (L b                                                                                    premise

        (2) a (L b ( (c(c (L a)                                                               TL1

        (3) a (L b ( (c(c (L a ( c (L b)                                                 TL2

        (4) a (L b ( (c(d((c (L a  ( d (L a)  ( c (L d)                          TL3

        (5) (c(c (L a)                                                                      MP (1), (2)

        (6) (c(c (L a ( c (L b)                                                       MP (1), (3)

        (7) (c(d((c (L a  ( d (L a)  ( c (L d)                                MP (1), (4)

        (8) (c(c (L a)((c(c (L a ( c (L b)(
                                (c(d((c (L a  ( d (L a)  (  c (L d)         (-adding (5), (6), (7)

        2. (c(c (L a)((c(c (L a ( c (L b)((c(d((c (L a  ( d (L a)  (  c (L d) ( a (L b  - see Theorem of sufficient criterion of L-axiom. 

Therefore, if we accept in addition Rule of Extensionality in the form of Lesniewski, we can deduce all the theorems of L-Ontology in our Calculus of Nomens.

14. About consistency of Ontology

Theorem of consistency. If Lesniewski’s protothetics is consistent, then Ontology is also consistent. 

To prove the theorem we should  to offer an interpretation of Ontology in protothetics. I shall use the following interpretation (I) here:

1. If a is a name variable or constant, then I(a) is a propositional variable or constant accordingly. I shall use a for I(a).

2. If f is a projector, then I0(f) is a prothotetic functor f of the type (S,S)/S. I shall use the symbol f for I0(f) also. Now I shall use the following interpretation of projector f: I(f) is I0(f)*, where f*(a,b) ( f(a,b)(a(b.

3. I(Mod(a,b,c,f)) is the formula (a(f*(b,c) ( a ( f*(b,c) ( (a(b(c) ( (c ( b)). I shall use also the symbol ModS(a,b,c,f) for I(Mod(a,b,c,f)).

In other respects, formulas of Ontology do not change in the interpretation. 

I shall use sign “=” in the expressions “I(A) = B” (or “B = C”) for the assertion that formula B of protothetics is an interpretation of the formula A of Ontology (or interpretation B equals interpretaton C). I shall sometimes use parentheses […] for secretion of formula B or its equivalent representations. 

Lemma. (a(f*(b,c) ( a ( f*(b,c) ( (a(b(c) ( (c ( b)) ( (a(f(b,c) ( a ( f(b,c) ( (a(b(c) ( (c ( b))

Further I(b ( a) = I((c(fMod(a,b,c,f)) = (c(f(I(Mod(a,b,c,f))) = [(c(f(a(f(b,c) ( a ( f(b,c) ( a(b(c ( (c ( b))] ( [(c(a((b(c)) ( a] (  a ( b. Therefore we have:

I(b ( a) = a ( b.

I(Modus(b)) = [(a(a(b)] ( b

I(b (* c) = I((a(fMod(a,b,c,f)) = (a(f(I(Mod(a,b,c,f))) = [(a(f(a(f(b,c) ( a ( f(b,c) ( a(b(c ( (c ( b))] ( b(c. Therefore we have:

I(b (* c) = b(c.

For Ontological Definitions

D(ik1…km. 

Mi ( [(xk1…(xkm((yp1...(ypnMod(xk,C,yp) ( Modk1…km(xk1,…,xkm) ( ((xk1,…,xkm))],

we obtain

I(Mi ( [(xk1…(xkm((yp1...(ypnMod(xk,C,yp) ( Modk1…km(xk1,…,xkm) ( ((xk1,…,xkm))]) = [I(Mi) ( ((xk1…(xkm((yp1...(ypnModS(xk,C,yp) ( ModSk1…km(xk1,…,xkm) ( (I(xk1,…,xkm)))

The formula (xk1…(xkm((yp1...(ypnModS(xk,C,yp) ( ModSk1…km(xk1,…,xkm) ( (I(xk1,…,xkm)) can be deduced from the relevant kind of prothotetic definition (see below), i.e. it is a theorem of prothotetics. Therefore all conditional is a theorem of prothotetics too. 

The same logic takes place for the case of Ontological Definition

D(aik1…km. 

Mi ( [(xk1…(xkm(
[image: image202.wmf]а

((yp1...(ypnMod(xk,F(
[image: image203.wmf]а

),yp) ( Modk1…km(xk1,…,xkm) ( ((xk1,…,xkm,
[image: image204.wmf]а

))].

I shall consider some proofs in a more detailed form below. I shall use notation ModSk1…kn for I(Modk1…kn).
Theorem D(1234. ModS(C,a,b,f*) ( ModS234(a,b,f*) ( P(a,b,f*)
Proof.  1. ModS(C,a,b,f*) ( ModS234(a,b,f*) ( P(a,b,f*)

             (1) ModS(C,a,b,f*)                                                    premise

             (2) (xModS(x,a,b,f*)                                            (x-adding (1)

             (3) (xModS(x,a,b,f*) ( ModS234(a,b,f*)            definition of Mod234S(a,b,f*)

             (4) ModS234(a,b,f*)                                                   MP (2), (3)

             (5) C(f*(a,b) ( f*(a,b)(P(a,b,f*)             definition of prothotetics

             (6) C(f*(a,b)(C(f*(a,b)((C(a(b)((b(a)                    (1)
             (7) C(f*(a,b)(f*(a,b)                                             (-omitting (6)

             (8) [C(f*(a,b)(f*(a,b)] ( C                                theorem of prothotetics

             (9) C                                                                      MP (7), (8)

           (10) f*(a,b)                                                             (-omitting (6)

           (11) C(f*(a,b)                                                  (-adding (9), (10)

           (12) f*(a,b)(P(a,b,f*)                               consequence of (5), (11)

           (13) P(a,b,f*)                                                          (-omitting (13)

           (14) ModS234(a,b,f*) ( P(a,b,f*)                              (-adding (4), (13)

        2. ModS234(a,b,f*) ( P(a,b,f*) ( ModS(C,a,b,f*)

             (1) ModS234(a,b,f*)                                               1st premise

             (2) P(a,b,f*)                                                          2nd premise

             (3) (xModS(x,a,b,f*)                                    definition of Mod234S(a,b,f)

             (4) ModS(x0,a,b,f*)                                               (x-omitting (3)

             (5) (x0(f*(a,b))(x0(f*(a,b)((x0(a(b)((b(a)             (4)

             (6) f*(a,b)                                                             (-omitting (5)

             (7) f*(a,b)(P(a,b,f*)                                            (-adding (2), (6)      

             (8) C(f*(a,b) ( f*(a,b)(P(a,b,f*)                 definition of prothotetics

             (9) C(f*(a,b)                                                 consequence of (7), (8)

           (10) C(f*(a,b)                                                        consequence of (9)

           (11) C                                                                        (-omitting (9)

           (12) f*(a,b)((b(a)                                                      (-omitting (5)

           (13) f*(a,b) ( f(a,b)(a(b                             definition of f*

           (14) f(a,b)(a(b                                        consequence of (6), (13)

           (15) a(b                                                           (-omitting (14)

           (16) C(a(b                                                 consequence of (11), (15)

           (17) (C(f*(a,b))(C(f*(a,b)((C(a(b)((b(a)    (-adding (10)-(12), (16)
           (18) ModS(C,a,b,f*)                                                         (17)

Therefore the theorem can be proved on the basis of acception of the definition C(a(b(f(a,b) ( a(b(f(a,b)(Q(a,b,f) in prothotetics, where a(b(f(a,b)(Q(a,b,f) ( a(b(f(a,b)(P(a,b,f*)  (see 1(5) and 2(8)). To obtain the formula Q(a,b,f) we should to replace any f*(x,y) in P by f(x,y)(x(y. The definition C(a(b(f(a,b) ( a(b(f(a,b)(Q(a,b,f) is a conditional definition, i.e. the definition of the form a(b(f(a,b) ( (C ( Q(a,b,f)). I would like to note that Slupecki (see
) used interpretation of (L-functor as conjunction in prothotetics. Ontological definitions (a (L C ( a (L a ( P(a)) pass to conditional prothotetic definitions (a(C ( a ( P(a)) in this case. Therefore conditional definitions are implied in prothotetics. 
The following theorems can be proved by the same way:
Theorem D(2134. ModS(a,C,b,f*) ( ModS134(a,b,f*) ( P(a,b,f*) [here the definition a(f*(C,b) ( a(b((xf(x,b)(P(a,b,f*) can be accepted]

Theorem D(3124. ModS(a,b,C,f*) ( ModS124(a,b,f*) ( P(a,b,f*) [here the definition a(f*(b,C) ( a(b((xf(b,x)(P(a,b,f*) can be accepted]

Theorem D(4123. ModS(a,b,c,(*) ( ModS123(a,b,c) ( P(a,b,c) [here the definition (*(b,c)(a ( a(b(c(P(a,b,c) can be accepted]

Theorem D(123. ModS123(C,a,b) ( ModS23(a,b) ( P(a,b) [here the definition C(a(b ( a(b(P(a,b) can be accepted]

Theorem D(134. ModS134(C,b,f*) ( ModS34(b,f*) ( P(b,f*) [here the definition C(b((x(x(f(x,b)) ( b((x(x(f(x,b))(P(b,f*) can be accepted]

Theorem D(213. ModS123(a,C,b) ( ModS13(a,b) ( P(a,b) [here the definition C(a(b ( a(b(P(a,b) can be accepted]

Theorem D(214. ModS124(a,C,f*) ( ModS14(a,f*) ( P(a,f*) [here the definition C(a((x(x(f(a,x)) ( b((x(x(f(a,x))(P(a,f*) can be accepted]

Theorem D(312. ModS123(a,b,C) ( ModS12(a,b) ( P(a,b) [here the definition C(a(b ( a(b(P(a,b) can be accepted], 

etc.
Let I(D(ik1…km) be the interpretation of the definition D(ik1…km in prothotetics. In the general case, if a definition D(ik1…km is done, then it is sufficient 
either to accept the prothotetic definition of the following form
                  Ci ( xk1 (…( xkm ( xk1 (…( xkm ( P(xk1,…,xkm) 
to prove the interpretation I(D(ik1…km) in prothotetics,
where xkj is a propositional variable, when kj<4, and  x4 is either (y(z(f*(y,z)) outside the formula P(xk1,…,xkm), or x4 is f* inside the formula P(xk1,…,xkm), where the categorial type of the functor f is (S,S)/S; Ci is a constant C of the type S, when i<4;
or to accept the prothotetic definition of the following form
                  (y(z((*(y,z)) ( xk1 (…( xkm ( xk1 (…( xkm ( P(xk1,…,xkm),

where ( is a definable functor of the type (S,S)/S, xkj is a propositional variable and kj<4.

I would like to note that the following equivalences can be proved in prothotetics
             a ( (y(z(f*(y,z)) ( a ( (y(y ( f(y,a)) ( a ( (z(z ( f(a,z))

                           a ( b ( (y(z(f*(y,z)) ( a ( b ( f(a,b)

That is why I did not write, for example, the definition C(a(b((y(z(f*(y,z)) ( a(b((y(z(f*(y,z))(P(a,b,f*), but wrote C(f*(a,b) ( f*(a,b)(P(a,b,f*) in the case of the interpretation of definition D(1234. The same are true in all another cases written abowe.
Further, the following equalitiy can be proved here:

I(a (21 b) = [(с(a(с ( b(с)] ( [a(b]

Therefore Ontological Law of Extentionality LE21 (LEa21) is transformed to a Prothotetic Law of Extensionality. Another Ontological Laws of extensionality (LE3124, LE4123, LEa21, LEa3124, LEa4123) are transformed to according Prothotetical Laws of Extensionality also. 
Let (ik1…km be the interpretation of weak equality (ik1…km in prothotetics. I shall prove in a more detailed form the theorem for the interpretation of LE4123 below. 
Theorem LE4123. (f* (4123 g*) ( (((((f*) ( ((g*)), where f, g are variables of the categorial type (S,S)/S and ( is a variable of the type ((S,S)/S)/S.
Proof. (1) f* (4123 g*                                                                  premise
           (2) (a(b(c(((a(f*(b,c))(a(f*(b,c)((a(b(c)((c(b)) ( 

(((a(g*(b,c))(a(g*(b,c)((a(b(c)((c(b)))                                        (1)

           (3) ((a(f*(b,c))(a(f*(b,c)((a(b(c)((c(b)) ( 

(((a(g*(b,c))(a(g*(b,c)((a(b(c)((c(b))                                (a(b(c-omitting (2)

           (4) ((1(f*(b,c))(1(f*(b,c)((1(b(c)((c(b)) ( 

(((1(g*(b,c))(1(g*(b,c)((1(b(c)((c(b))                     substitution of 1 for a in (3)

           (5) ((f*(b,c)((b(c)) ( ((g*(b,c)((b(c))                consequence of (4)

           (6) f*(b,c)((b(c) ( f*(b,c)                             consequence of definition of f*

           (7) g*(b,c)((b(c) ( g*(b,c)                            consequence of definition of g*

           (8) f*(b,c) ( g*(b,c)                              consequence of definition of (5)-(7)

           (9) (b(c(f*(b,c) ( g*(b,c))                                (b(c-adding (8)

         (10) (h(k((b(c(h(b,c)(k(b,c)) 
                                   ( (((((h)(((k)))                  Prothotetical Law of Extensionality
         (11) (b(c(h(b,c)(k(b,c)) ( (((((h)(((k)))          (h(k-omitting (10)
         (12) (b(c(f*(b,c) ( g*(b,c)) 

                               ( (((((f*)(((g*)))       substitution of f*, g* for h,k accordingly in (11)

         (13) (((((f*)(((g*)))                                                   MP (9), (12)
For axioms of Ontology we obtain:

(AO1) I(b ( a ( (d(d ( b ( d ( a) ( b ( b ( Modus(a)) = [a ( b ( (d((b ( d) ( (a ( d)) ( (b ( b)]– the case of theorem of protothetics. 

(AO2) I(Mod(a,b,c,f) ( (a =1234 f(b,c)) ( (aMod(a,b,c,f)) =

= [(a(f(b,c) ( a ( f(b,c) ( a((b(c) ( (c ( b)) ( (a ( f(b,c)) ( a ( f(b,c) ( (a(a(f(b,c) ( a ( f(b,c) ( a((b(c) ( (c ( b))] - the case of theorem of protothetics too (here I used the equality I(a =1234 b) ( (a(b)).

In other syntactical respects Ontology does not differ from L-Ontology (Ontology of Lesniewski) and it is known that if prothotetics is consistent, then L-Ontology is also consistent (see
). Therefore, under this interpretation, all the rules of inference of Ontology become primitive or secondary rules of protothetics. This proves the theorem.

Let ( be Ontology. I shall use notation ([A1,…, An] for version of Ontology with formulas A1,…, An as additional axioms.

I(NModa(a)) = I(Moda(a) ( (b(Moda(b) ( b ( a)) ( [a ( (b(b ( (b ( a))]. Then we have: 

I((aNModa(a)) = (a(a ( (b(b ( (b ( a))) – the case of theorem of protothetics, which can be deduced from the theorem 1 ( (b(b ( b(1), where 1 ( (x(x(x) in protothetics. 

Therefore version of Ontology with Axiom of null mode presence [AN], or ([AN], is also consistent if protothetics is consistent.

Further, we have: I(PModa(a)) = I((b(a ( b ( ((b ( a))) = [(b(b(a ( ((a(b))] ( 0, where 0 ( (p(p) in prothotetics. From here we obtain: I(a (1 b) = I(a ( b ( PModa(b)) ( [b(a ( 0] ( 0. Taking into account these results we have for Axiom of separation [AS]:

I(Moda(a) ( Moda(b) ( ((a ( b) ( (x(b (1 x ( (y(x (1 y ( ((a ( y)))) ( [0 ( 0] – the case of theorem of protothetics.

Therefore versions of Ontology ([AS] and ([AN,AS] are consistent if protothetics is consistent. In particular, Boolean algebra was developed by us in ([AN,AS]. 

Let us check now axioms LA1-LA6 of Calculus of Nomens. 

LA1. Nomen2(a,b) ( (Nom(a,b,c) ( c (i b)

I accept here that 

I(Nom(a,b,c,f)) = (a(b)((b(c),

I(f) = p12, where p12 is 1-projector for two arguments, i.e., p12(a,b) ( a. 

Therefore we can also write: I(Nom(a,b,c,f)) = [(a ( p12(b,c))((b(c)] ( (a(b)((b(c).

From here we obtain that I(Nom(a,b,c,f)) = I(Nom(a,b,c)).

Then I accept that I(Ob(a)) ( 0. 

Therefore we have: 

I(c (i b) = I(c ( b ( (((b ( c) ( ((Ob(b)))) = [b(c ( ((c ( b) ((0)]  (  [b(c],

I(Nomen2(a,b)) = I((cNom(a,b,c)) = (c(I(Nom(a,b,c))) = (c((a(b)((b(c)) ( [a(b],

I(Nomen2(a,b) ( (Nom(a,b,c) ( c (i b)) = [a(b ( ((a(b)((b(c) ( b(c)] – it is a theorem of protothetics.

LA2. Nom(a,b,c,f) ( (f(b,c) =eN a) ( (f(b,c) =iN a) ( (aNom(a,b,c,f)

We have here: 

I(Nomen1(a,c)) ( (b((a(b)((b(c))  (  a ( c

I(a =eN b) = I((x(Nomen1(a,x) ( Nomen1(b,x)) ( Nomen(a) ( Nomen(b)) = [(x(a(x ( b(x)] ( [a(b]

I(a =iN b) = [a(b]

Then I(Nom(a,b,c,f) ( (f(b,c) =eN a) ( (f(b,c) =iN a) ( (aNom(a,b,c,f)) ( [(a(b)((b(c) ( (a(b)((b ( c)] – the case of theorem of protothetics.

LA3. Nomen(a) ( iSing(a)

Here: 

I(Nomen(a)) = (b(c((a(b)((b(c)) is a theorem of protothetics,

I(iSing(a)) = I(Nomen(a) ( (x(y(Nomen2(a,x)( Nomen2(a,y) ( x=y)) ( [(x(y((a(x)((a(y) ( x(y)] is theorem of protothetics.

Hence we have: I(Nomen(a) ( iSing(a)) is also theorem of protothetics.

LA4. Ob(a) ( UModus(a) ( PModa(a)

Here: I(Modus(b)) ( b (see above). From here we obtain:

I(UModus(a)) = I(Modus(a) ( (b(b ( a ( a ( b)) ( [a ((b((a ( b) ( (b ( a))] ( a

I(PModa(a)) ( 0 (see above)

Therefore we have here: I(Ob(a) ( UModus(a) ( PModa(a)) ( [0 ( (a ( 0)] – theorem of protothetics. 

LA5. Des(c) ( (aNom(a,c,c)

Here: I(Des(c)) = (a(b((a(b)((b(c)) is a theorem of protothetics,

I((aNom(a,c,c)) = (a((a(c)((c(c)) – the case of theorem of protothetics too.

Therefore one can conclude that I(Des(c) ( (aNom(a,c,c)) is also a theorem of protothetics.

LA6. Modus(c) ( Model(c)

Here: I(Modus(c) ( Model(c)) ( [c ( c] is theorem of protothetics,

From here we have that version of Ontology ([LA1,…,LA6] is consistent if protothetics is consistent. 

15. To Theory of Kripke’ Modal Ontologies

Let Ev(x,y,z) be predicate “x is realization of event y in possible world z”. I shall denote x and y as “little event” and “big event” accordingly. Let also predicate Acs(x,y) be predicate “possible world x is accessible for possible world y”.

Let be done the following primary definitions:

DK1. ev1(x,y) ( (zEv(x,y,z), where “ev1(x,y)” is read as “x is a realization of event y ”

DK2. ev2(x,z) ( (yEv(x,y,z), where “ev2(x,z)” is read as “x is a realization of an event in possible world z”

DK3. ev(x) ( (y(zEv(x,y,z), where “ev(x)” is read as “x is a realization of an event” (“x is a little event”)

DK4. Ev(y) ( (x(zEv(x,y,z), where “Ev(y)” is read as “y is an event” (“x is a big event”)

DK5. W(z) (  (x(yEv(x,y,z), where “W(z)” is read as “z is a possible world”

DK6. pev2(x,z) ( ev2(x,z) ( PModa(x), where “pev2(x,z)” is read as “x is a positive realization of an event in a possible world z”

DK7. nev2(x,z) ( ev2(x,z) ( NModa(x), where “nev2(x,z)” is read as “x is negative realization of an event in possible world z”

DK8. 1. acs(z) ( x ( NModa(x)

         2. acs(z) (* x ( x ( x ( Acs(x,z)

Therefore, here acs(z) is set of all possible worlds accessible for possible world z.

Further I shall accept the following axioms here:

K1. Ev(x,y,z) ( Mod(x,y,z,Sem) ( ev(x) ( Ev(y) ( W(z) [Axiom of K-Modality] This axiom connects Ev-predicate and Mod-predicate. In particular, axiom asserts that if x is a realisation of an event y in a possible world z, then x is a mode of modus y in model z with the special projector Sem (semantic projector). Therefore “little event” x is “event-mode”, “big event” y is “event-moduse”, and possible world z is a model for “big events”.

K2. Acs(x,y) ( W(x) ( W(y) [Axiom of world-ness of accessibility]

K3. Ev(y) ( W(z) ( (xEv(x,y,z) [Axiom of total modelity], i.e., any event (as “big event”) can form own realizations in any possible world

At last one can define the following definitions:

DKM. M(x) ( (y(W(y) ( (z(t(Acs(t,y) ( Ev(z,x,t) ( PModa(z))), here “M(x)” is read as “x is possible”

DKL. L(x) ( (y(W(y) ( (z(t(Acs(t,y) ( Ev(z,x,t) ( PModa(z))), here “L(x)” is read as “x is necessary”

On the basis of these definitions and axioms, taking into account also the following additional conventions (which propose acception of Boolean algebra on moduses):

AxK1. Ev(x) ( Ev(y) ( Ev(x(y) ( Ev(x(y) ( Ev(x()

AxK2. Ev(x,y,z) ( Ev(t, y(,z) ( (PModa(x) ( NModa(t))

AxK3. Ev(x,y,z) ( Ev(t,v,z) ( Ev(s, y(v,z) ( ((NModa(x) ( NModa(t)) ( NModa(s))

we can prove the following theorems of modal logic K:

Theorem K1. Ev(x) ( Ev(y) ( [L(x((y) ( (L(x) ( L(y))]

Proof. (1) Ev(x)                                                                                                  1st premise

          (2) Ev(y)                                                                                                   2nd premise

          (3) L(x((y)                                                                                               3rd premise

      +1(4) L(x) ( (L(y)                                                                                          premise

          (5) L(x)                                                                                               (-omitting (4)

          (6) (L(y)                                                                                             (-omitting (4)

          (7) L(x) ( (y(W(y) ( (z(t(Acs(t,y) ( Ev(z,x,t) ( PModa(z)))                      DKL

          (8) (y(W(y) ( (z(t(Acs(t,y) ( Ev(z,x,t) ( PModa(z)))                          MP (5), (7)

          (9) W(y) ( (z(t(Acs(t,y) ( Ev(z,x,t) ( PModa(z))                                (y-omitting (8)

        (10) (L(y) ( (v(W(v) ( (z(t(Acs(t,v) ( Ev(z,y,t) ( (PModa(z)))                    DKL

        (11) (v(W(v) ( (z(t(Acs(t,v) ( Ev(z,y,t) ( (PModa(z)))                           MP (6), (10)

        (12) W(v0) ( (z(t(Acs(t,v0) ( Ev(z,y,t) ( (PModa(z))                           (v-omitting (11)

        (13) (z(t(Acs(t,v0) ( Ev(z,y,t) ( (PModa(z))                                           (-omitting (12) 

        (14) Acs(t0,v0) ( Ev(z0,y,t0) ( (PModa(z)                                             (z(t-omitting (13)

        (15) Ev(z0,y,t0)                                                                                         (-omitting (14)

        (16) Ev(z0,y,t0) ( Moda(z0)                                                                          K1

        (17) Moda(z0)                                                                                           MP (15), (16)

        (18) NModa(z0)                                                    Theorem of modal incompatibility, (17)

        (19) W(v0) ( (z(t(Acs(t,v0) ( Ev(z,x,t) ( PModa(z))        Substitution of v0 for y in (9)

        (20) Acs(t0,v0)                                                                                        (-omitting (14)

        (21) Acs(t0,v0) ( W(v0)                                                                             K2

        (22) W(v0)                                                                                               MP (20), (21)

        (23) (z(t(Acs(t,v0) ( Ev(z,x,t) ( PModa(z))                                           MP (19), (22)

        (24) Acs(t0,v0) ( Ev(z,x,t0) ( PModa(z)                                              (z(t-omitting (23)

        (25) Ev(x) ( W(t0) ( (zEv(z,x,t0)                                                                K3

        (26) Acs(t0,v0) ( W(t0)                                                                                K2

        (27) W(t0)                                                                                                MP (20), (26)

        (28) Ev(x) ( W(t0)                                                                             (-adding (1), (27)

        (29) (zEv(z,x,t0)                                                                                      MP (25), (28)

        (30) Ev(z1,x,t0)                                                                                       (z-omitting (29)

        (31) Acs(t0,v0) ( Ev(z1,x,t0) ( PModa(z1)                           Substitution of z1 for z in (24)                             

        (32) Acs(t0,v0) ( Ev(z1,x,t0)                                                               (-adding (20), (30)

        (33) PModa(z1)                                                                                   MP (31), (32)

        (34) Ev(x) ( Ev(x()                                                                                    AxK1

        (35) Ev(x()                                                                                            MP (1), (34)       

        (36) Ev(y) ( Ev(x() ( Ev(x((y)                                                                  AxK1

        (37) Ev(y) ( Ev(x()                                                                               (-adding (2), (35)

        (38) Ev(x((y)                                                                                      MP (36), (37)

        (39) Ev(x() ( W(t0) ( (zEv(z,x(,t0)                                                           K3

        (40) Ev(x() ( W(t0)                                                                               (-adding (27), (35)

        (41) (zEv(z,x(,t0)                                                                                 MP (39), (40)

        (42) Ev(z2,x(,t0)                                                                                    (z-omitting (41)

        (43) Ev(z1,x,t0) ( Ev(z2,x(,t0) ( (PModa(z1) ( NModa(z2))                         AxK2

        (44) Ev(z1,x,t0) ( Ev(z2,x(,t0)                                                               (-adding (30), (42)

        (45) PModa(z1) ( NModa(z2)                                                              MP (43), (44)

  (46) NModa(z2)                                                                        consequence of (33), (45)

  (47) Ev(x((y) ( W(t0) ( (zEv(z, x((y,t0)                                                  K3

  (48) Ev(x((y) ( W(t0)                                                                          (-adding (27), (38)

  (49) (zEv(z, x((y,t0)                                                                             MP (47), (48)

  (50) Ev(z3, x((y,t0)                                                                                (z-omitting (49)

  (51) Ev(z0,y,t0) ( Ev(z2,x(,t0) ( Ev(z3,x((y,t0) ( 

                              ((NModa(z0) ( NModa(z2)) ( NModa(z3))                    AxK3

  (52) Ev(z0,y,t0) ( Ev(z2,x(,t0) ( Ev(z3,x((y,t0)                           (-adding (15), (42), (50)

  (53) (NModa(z0) ( NModa(z2)) ( NModa(z3)                                     MP (51), (52)

  (54) NModa(z0) ( NModa(z2)                                                              (-adding (18), (46)

  (55) NModa(z3)                                                                       consequence of (53), (54)

  (56) (PModa(z3)                   consequence of Theorem of modal incompatibility and (55)

  (57) Ev(z3,y(x(,t0) ( (PModa(z3)                                                        (-adding (50), (56)

  (58) Acs(t0,v0) ( Ev(z3,x((y,t0) ( (PModa(z3)                                    (-adding (20), (57)

  (59) (z(t(Acs(t,v0) ( Ev(z, x((y,t) ( (PModa(z)))                               (z(t-adding (58)

  (60) W(v0) ( (z(t(Acs(t,v0) ( Ev(z, x((y,t) ( (PModa(z)))               (-adding (22), (59)

  (61) (v(W(v) ( (z(t(Acs(t,v) ( Ev(z, x((y,t) ( (PModa(z))))                (v-adding (60)

  (62) (v(W(v) ( (z(t(Acs(t,v) ( Ev(z, x((y,t) ( (PModa(z)))) ( (L(x((y)     DKL

  (63) (L(x((y)                                                                                            MP (61), (62)

  (64) L(x((y) ( (L(x((y)                                                                       (-adding (3), (63)

-1(65) (L(x) ( (L(y)) ( A((A                                  omitting of premise (4) [here A is (3)]

  (66) L(x) ( L(y)                                                                            consequence of (65)

Theorem K2. (y(W(y) ( (z(Ev(z,x,y) ( PModa(z))) ( L(x)

Proof. (1) (y(W(y) ( (z(Ev(z,x,y) ( PModa(z)))                              premise

           (2) W(y) ( (z(Ev(z,x,y) ( PModa(z))                               (y-omitting (1)

       +1(3) Acs(t,y) ( Ev(z,x,t)                                                           premise

           (4) Acs(t,y) ( W(t)                                                                    K2

           (5) Acs(t,y)                                                                         (-omitting (3)

           (6) W(t)                                                                                MP (4), (6)

           (7) W(t) ( (z(Ev(z,x,t) ( PModa(z))                      substitution of t for y in (2)        

           (8) (z(Ev(z,x,t) ( PModa(z))                                               MP (6), (7)

           (9) Ev(z,x,t) ( PModa(z)                                                   (z-omitting (8)

         (10) Ev(z,x,t)                                                                         (-omitting (3)

         (11) PModa(z)                                                                       MP (9), (10)

     -1(12) Acs(t,y) ( Ev(z,x,t) ( PModa(z)                            omitting of premise (3)         

        (13) (z(t(Acs(t,y) ( Ev(z,x,t) ( PModa(z))                     (z(t-adding (12)

        (14) W(y) ( (z(t(Acs(t,y) ( Ev(z,x,t) ( PModa(z))     consequence of (13)

        (15) (y(W(y) ( (z(t(Acs(t,y) ( Ev(z,x,t) ( PModa(z)))        (y-adding (14)

        (16) (y(W(y) ( (z(t(Acs(t,y) ( Ev(z,x,t) ( PModa(z))) ( L(x)    DKL

        (17) L(x)                                                                                MP (15), (16)

If we accept formulas of modal propositional calculus K (with modal operators ( and () as “big events”, i.e., Ev(x) iff x is a formula of K, and, besides, if we accept that 1) L(x) iff ((x) is true, 2) M(x) iff ((x) is true, then we can interprete possible worlds as ones in a model of K, and “little events” as truth values in possible worlds, where positive mode is “truth” and null mode is “false”. Also one can interprete Boolean operations on events as corresponding Boolean logical operations in K (term “x((y” in Theorem K1 becomes formula “x(y” of theory K in this case). In this case DKL and DKM become semantic rules for modal formulas, and Theorems K1 and K2 become true semantical assertions for theory K: “if ((x(y) is true, then ((x)(((y) is also true” and “if x is true, then ((x) is true” accordingly, on the basis of which we can deduce all the theorems of K (of course, if we accept Theorem of Tautology for non modal formulas). 

16. Theory of Natural Numbers in Ontology

Let N be a modus defined by the following definitions and axioms:

DN1. S(b,a) ( b ( a ( ((a ( b) ( ((x(b ( x ( ((x ( b) ( x ( a ( ((a ( x)), where “S(b,a)” is read as “b is successive relatively a”

DN2. 1 ( a ( a ( a ( (x(N (1 x  ( x ( a)

DN3. S(a) ( x ( x ( x ( a ( a ( (a ( x ( (y(S(y,a) ( y ( x))

AN1. (x(N (1 x ( (y(N (1 y ( y ( x)) [Axiom of unity]

AN2. (x(N (1 x ( (y(S(y,x) ( (z(S(z,x) ( z = y)) [Axiom of successor]

AN3. (x(y(N (1 x ( (x (1 y ( y (1 x)  ( N (1 y) [Axiom of entry]

AN4. (x(y(N (1 x ( N (1 y ( (S(x) = S(y)) ( x = y) [Axiom of injectivity]

AN5. P(1) ( (x((N (1 x ( P(x)) ( P(S(x))) ( (x(N (1 x ( P(x)) [Axiom of induction] (here P is a functor of the type S/N)

Theorem of unity. N (1 1

Proof.  (1) (x(N (1 x ( (y(N (1 y ( y ( x))                                          AN1

           (2) N (1 x0 ( (y(N (1 y ( y ( x0)                                        (x-omitting (1)

           (3) N (1 x0                                                                             (-omitting (2)

           (4) (y(N (1 y ( y ( x0)                                                          (-omitting (2)

           (5) N (1 y ( y ( x0                                                                (y-omitting (4)

      +1 (6) x0 ( z                                                                                 premise

           (7) x0 ( z  ( z ( z                    D(1., Lemma3, Theorem of modus and mode 

                                            equivalence, Theorem of modus and identical mode equivalence

          (8) z ( z                                                                                   MP (6), (7)

     +2 (9) N (1 x                                                                                premise

        (10) N (1 x ( x ( x0                                                         substitution of x for y in (5)

        (11) x ( x0                                                                                 MP (9), (10)

        (12) x ( x0 ( x0 ( z                                                               (-adding (6), (11)

        (13) x ( x0 ( x0 ( z  ( x ( z                                          D(1., Theorem of transitivity

        (14) x ( z                                                                                   MP (12), (13)

    -2 (15) N (1 x ( x ( z                                                             omitting of premise (9)

        (16) (x(N (1 x ( x ( z)                                                              (x-adding (15)

        (17) z ( z ( (x(N (1 x ( x ( z)                                             (-adding (8), (16)

        (18) z ( z ( (x(N (1 x ( x ( z) ( 1 ( z                                              DN2

        (19) 1 ( z                                                                                    MP (17), (18)

    -1 (20) x0 ( z  ( 1 ( z                                                              omitting of premise (6)

    +3(21) 1 ( z                                                                                         premise

        (22) 1 ( z ( z ( z ( (x(N (1 x ( x ( z)                                              DN2

        (23) z ( z ( (x(N (1 x ( x ( z)                                                   MP (21), (22)

        (24) (x(N (1 x ( x ( z)                                                               (-omitting (23)

        (25) N (1 x ( x ( z                                                                     (x-omitting (24)

        (26) N (1 x0 ( x0 ( z                                                      substitution of x0 for x in (25)

        (27) x0 ( z                                                                                   MP (3), (26)

    -3 (28) 1 ( z  ( x0 ( z                                                             omitting of premise (21)

        (29) x0 ( z  ( 1 ( z                                                                    (-adding (20), (28)

        (30) (z(x0 ( z  ( 1 ( z)                                                               (z-adding (29)

        (31) (z(x0 ( z  ( 1 ( z) ( x0 ( 1                                                          DE21
        (32) x0 ( 1                                                                                   MP (30), (31)

        (33) N (1 x0 ( Moda(x0)                                                   DPMODA2, D(1., Lemma 3

        (34) Moda(x0)                                                                             MP (3), (33)

        (35) Moda(x0) ( x0 ( 1                                                            (-adding (32), (34)

        (36) Moda(x0) ( x0 ( 1 ( Moda(1)                                  First theorem of mode transfer

        (37) Moda(1)                                                                               MP (35), (36)

        (38) Moda(x0) ( Moda(1) ( x0 ( 1                                          (-adding (35), (37)

        (39) Moda(x0) ( Moda(1) ( x0 ( 1  ( x0 = 1                Theorem of relation of equalities

        (40) x0 = 1                                                                                   MP (38), (39)

        (41) x0 = 1 ( N (1 x0                                                                (-adding (3), (40)

        (42) x0 = 1 ( N (1 x0 ( N (1 1                                Extensional theorem of substitution*

        (43) N (1 1                                                                                MP (41), (42)

First theorem of successor. Modus(a) ( S(a) ( a

Proof.  (1) Modus(a)                                                                              premise

           (2) S(a) ( x ( x ( x ( a ( a ( (a ( x ( (y(S(y,a) ( y ( x))            DN3

           (3) S(a) ( a ( a ( a ( (a ( a ( (y(S(y,a) ( y ( a))     substitution of a for x in (2)

           (4) Modus(a) ( a ( a                Theorem of modus and identical mode equivalence, D(1.

           (5) a ( a                                                                                   MP (1), (4)

           (6) a ( a ( (y(S(y,a) ( y ( a)                                            (-adding (5)

           (7) a ( a ( (a ( a ( (y(S(y,a) ( y ( a))                              (-adding (5), (6)

           (8) S(a) ( a                                                                     consequence of (3), (7)

Second theorem of successor. N (1 x ( N (1 S(x)

Proof.  (1) N (1 x                                                                           premise

           (2) N (1 x ( Modus(x)                        D(P., DPMODA2, Lemma 3, Theorem of modus and 

                                                                                               mode equivalence

          (3) Modus(x)                                                                     MP (1), (2)

          (4) N (1 x ( PModa(x)                                                     D(P., DPMODA2

          (5) PModa(x)                                                                    MP (1), (4)

          (6) Modus(x) ( S(x) ( x                                        First theorem of successor

          (7) S(x) ( x                                                                       MP (3), (6)

          (8) S(x) ( x ( PModa(x)                                              (-adding (3), (7)

          (9) S(x) ( x ( PModa(x) ( S(x) (1 x                                D(P., DPMODA2

        (10) S(x) (1 x                                                                      MP (8), (9)

        (11) S(x) (1 x  (  x (1 S(x)                                              (-adding (10)

        (12) N (1 x ( (S(x) (1 x  (  x (1 S(x))                            (-adding (1), (11)

        (13) N (1 x ( (S(x) (1 x  (  x (1 S(x)) ( N (1 S(x)                AN3

        (14) N (1 S(x)                                                                   MP (12), (13)

I would like to note that definition DN3 entails the following definition accordingly D(**12:

DN3*. S(a) = x  ( x ( x ( a ( a ( (z([a ( z ( (y(S(y,a) ( y ( z] ( x ( z))

Third theorem of successor. N (1 x ( S(y,x) ( S(z,x) ( y = z

Proof. (1) N (1 x                                                                                       1st premise

          (2) S(y,x)                                                                                         2nd premise

          (3) S(z,x)                                                                                          3rd premise

          (4) (x(N (1 x ( (y(S(y,x) ( (z(S(z,x) ( z = y))                              AN2

          (5) N (1 x ( (y(S(y,x) ( (z(S(z,x) ( z = y))                               (x-omitting (4)

          (6) (y(S(y,x) ( (z(S(z,x) ( z = y))                                                  MP (1), (5)

          (7) S(y0,x) ( (z(S(z,x) ( z = y0)                                                    (y-omitting (6)

          (8) (z(S(z,x) ( z = y0)                                                                     (-omitting (7)

          (9) S(z,x) ( z = y0                                                                         (z-omitting (8)

        (10) S(y,x) ( y = y0                                                             substitution of y for z in (9)

        (11) z = y0                                                                                      MP (3), (9)

        (12) y = y0                                                                                      MP (2), (10) 

        (13) z = y0 ( y = y0                                                                      (-adding (11), (12)

        (14) z = y0 ( y = y0  ( z = y                                      Theorem of modus equivalence (iii)

        (15) z = y                                                                                    MP (13), (14)

Fourth theorem of successor. N (1 x ( S(y,x) ( y = S(x)

Proof. (1) N (1 x                                                                                         1st premise

           (2) S(y,x)                                                                                          2nd premise

           (3) S(y,x) ( y ( x ( ((x ( y) ( ((z(y ( z ( ((z ( y) ( z ( x ( ((x ( z))  DN1

           (4) y ( x ( ((x ( y) ( ((z(y ( z ( ((z ( y) ( z ( x ( ((x ( z))       MP (2), (3)

           (5) y ( y ( x ( x ( (z([x ( z ( (t(S(t,x) ( t ( z)] ( y ( z)) ( S(x) = y  DN3*

     +1  (6) y ( z                                                                                        premise

           (7) S(y,x) ( y ( z                                                                      (-adding (2), (6)

           (8) {S(t,x) ( t ( z}t[y]              representation of (7) as result of substitution y for t

           (9) (t(S(t,x) ( t ( z)                                                                   (t-adding (8)

         (10) x ( z ( (t(S(t,x) ( t ( z)                                                        (-adding (9)

    -1 (11) y ( z  ( (x ( z ( (t(S(t,x) ( t ( z))                              omitting of premise (6)

    +2(12) x ( z ( (t(S(t,x) ( t ( z)                                                            premise

    +3(13) x ( z                                                                                          premise

        (14) y ( x                                                                                     (-omitting (4)

        (15) y ( x ( x ( z                                                                         (-adding (13), (14)

        (16) y ( x ( x ( z ( y ( z                                                  Theorem of transitivity, D(1.

        (17) y ( z                                                                                    MP (15), (16)

    -3(18) x ( z  ( y ( z                                                                omitting of premise (13)

    +4(19) (t(S(t,x) ( t ( z)                                                                 premise

        (20) S(t0,x) ( t0 ( z                                                                  (t-omitting (19)

        (21) S(t0,x)                                                                                (-omitting (20)

        (22) N (1 x ( S(y,x) ( S(t0,x)                                                (-adding (1), (2), (21)

        (23) N (1 x ( S(y,x) ( S(t0,x) ( y = t0                               Third theorem of successor

        (24) y = t0                                                                                   MP (22), (23)

        (25) y = t0 ( y ( t0                                                                             DE, D(1.

        (26) y ( t0                                                                                    MP (24), (25)

        (27) t0 ( z                                                                                 (-omitting (20)

        (28) y ( t0 ( t0 ( z                                                                    (-adding (26), (27)

        (29) y ( t0 ( t0 ( z ( y ( z                                                 Theorem of transitivity, D(1.

        (30) y ( z                                                                                MP (28), (29)

   -4 (31) (t(S(t,x) ( t ( z) ( y ( z                                               omitting of premise (19)

        (32) y ( z                                                                     consequence of (12), (18), (31)

   -2 (33) x ( z ( (t(S(t,x) ( t ( z) ( y ( z                                  omitting of premise (12)

        (34) [x ( z ( (t(S(t,x) ( t ( z)] ( y ( z                              consequence of (11), (33)

        (35) (z([x ( z ( (t(S(t,x) ( t ( z)] ( y ( z)                               (z-adding (34)

        (36) y ( x                                                                                    (-omitting (4)

        (37) y ( x ( y ( y       D(1., Lemma 3, Theorem of modus and identical mode equivalence

        (38) y ( x ( x ( x                                 D(1., Lemma 3, Theorem of modusness of mode, 

                                                                      Theorem of modus and identical mode equivalence

       (39) y ( y                                                                                 MP (36), (37)

       (40) x ( x                                                                                 MP (36), (38)

       (41) y ( y ( x ( x ( (z([x ( z ( (t(S(t,x) ( t ( z)] ( y ( z))     (-adding (35), (39), (40)

       (42) S(x) = y                                                                             MP (5), (41)

Theorem of non symmetry. N (1 x ( ((x ( S(x))

Proof.(1) N (1 x                                                                                                      premise

        (2) (x(N (1 x ( (y(y ( x ( ((x ( y) ( ((z(y ( z ( ((z ( y) ( z ( x ( ((x ( z))))   AN2

        (3) N (1 x ( (y(y ( x ( ((x ( y) ( ((z(y ( z ( ((z ( y) ( z ( x ( ((x ( z)))(x-omitting (1)

        (4) (y(y ( x ( ((x ( y) ( ((z(y ( z ( ((z ( y) ( z ( x ( ((x ( z)))             MP (1), (3)

        (5) y0 ( x ( ((x ( y0) ( ((z(y0 ( z ( ((z ( y0) ( z ( x ( ((x ( z))                (y-omitting (4)

        (6) y0 ( x ( ((x ( y0) ( ((z(y0 ( z ( ((z ( y0) ( z ( x ( ((x ( z)) ( S(y0,x)         DN1

        (7) S(y0,x)                                                                                                     MP (5), (6)

        (8) N (1 x ( S(y0,x)                                                                                (-adding (1), (7)

        (9) N (1 x ( S(y0,x) ( y0 = S(x)                                             Fourth theorem of successor

      (10) y0 = S(x)                                                                                              MP (8), (9)

      (11) ((x ( y0)                                                                                            (-omitting (6)

      (12) ((x ( y0) ( y0 = S(x)                                                                     (-adding (10), (11)

      (13) ((x ( y0) ( y0 = S(x) ( ((x ( S(x))                    Extensional theorem of substitution*      

      (14) ((x ( S(x))                                                                                          MP (12), (13)

17. To Theory of Whole and Parts in Ontology

I suppose below that theory of real numbers can be expressed in an extension of Ontology and =r is equality between real numbers. Let (i be version of Ontology, where all the entries of Mod-predicate are replaced by a predicate Modi, i = 1,2,3,…. Accordingly all the predicates and terms, derivative from Mod-predicate, acquire index i, for example: NModai(a) ( Modai(a) ( (b(Modai(b) ( Modai(a,b)), etc. Let now (* be version of Ontology including Ontology ( and at the same time i-Onologies (i. I shall accept here the following rules regulating relations between i-versions of Ontology and Ontology:

DH1. Inti(a) ( (IModusi(a) ( (NModai(a) ( Modusi(a), here “Inti(a)” is read as “a belongs to interior of i-level”

DH2. Int+i(a) ( (NModai(a) ( Modusi(a), where “Int+i(a)” is read as “a belongs to upper semi-interior of i-level”

DH3. Int -i(a) ( (IModusi(a) ( Modusi(a), where “Int-i(a)” is read as “a belongs to lower semi-interior of i-level”

AH1. a ( b ( a (i b

AH2. a (i b ( PModai(b) ( a ( b

AH3. Int+i+1(a) ( IModusi(a)

AH4. Int -i(a) ( NModai+1(a)

AH5. ((i = j) ( ((Inti(a) ( Intj(a))

Therefore i-Ontologies are ordered as levels of being. More high Ontology (its upper semi-interior) is expressed itself as IModus in more lower Ontology, and vice versa, more lower Ontology is represented in more high one as NModa (see AH3 and AH4). Besides (see AH5) any principle can exist only in the interior of one level of being. (-functor is the most precise between all (-functors (( and (i) (see AH1), since all (-relations are preserved in corresponding (i-relations. On the other hand, inverse assertion is true only for i-positive versions of (i-relations (see AH2).

Now I would like to explain the idea of Whole in these terms. Breafly speaking Whole can be defined as “divisible atom”, i.e., Whole is atom since Whole is a new principle comparatively its parts and at the same time Whole is a divisible principle as far as Whole has parts. This antinomy can be solved by introduction of levels of being. In this case Whole can be expressed as i-atom which at the same time is not (-atom. Therefore we can use the following definitions here:

DH4. Hi(a) ( Int+i(a) – this is the definition of predicate “Hi(a)”, “a is i-whole”, i.e., whole of i-level. Therefore a is i-modus and it is an i-positive modus. This definition defines the notion of the whole in an extreme general sense. Lower I shall use more narrow sense of the notion “whole”.

DH5. Hij(a,b) ( Ati(a) ( (j < i) ( Set(b) ( (x(x ( b ( Atj(x)) ( (x(x ( b) ( a=(b – this is the definition of the predicate “Hij(a,b)”, “a is a regular i-whole on a set b of j-elements” (or simply “ij-whole on set b”). Such version of Whole is more “regular”, here Whole is i-atom and is covered by elements as if wall is closely covered by plates. Besides all the elements here are j-atoms.

DH6. elij(a,b) ( (c(Hij(b,c) ( a ( c), where “elij(a,b)” is read as “a is j-element of b as regular i-whole” (or “a is element of ij-whole”)

DH7. hij[b] ( x ( (y(Hij(y,b) ( y ( x), here “hij[b]” is read as “i-whole on set b of j-elements” (or “ij-whole”)

DH8. prtikj(a,b) ( (cHij(b,c) ( Atk(a) ( k<i ( j<k ( b ( a, here “prtikj(a,b)” is read as “a is regular k-part of ij-whole”. Hence k-part is k-atom intermediated between regular whole as i-atom and elements as j-atoms.

Let ij-whole Hij(a,b) be given. Then I shall denote set b as extensional of a. I introduce for a and b objects ra and rb – realizations of a and b accordingly (realization rb can be null set (). I shall propose that some functions |*|ex: R[b] ( [0,1];  |*|iin: R[b] ( [0,1] , where i=1, 2, …, k, |*|: R[a] ( [0,1] be given, where R[a] is a set of realizations of the whole a (including a), and R[b] is a set of realizations of the extensional b (including b). Measure |rb|ex is such that the following demands must be true:

1. |rb|ex =r 1 (  rb 
[image: image205.wmf]Z

=

 b

2. |rb|ex =r 0 (  rb 
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=

 ( 

3. rb ( b (  |rb|ex ( |b|ex 

I propose that |ry|x ( |y|x and |y|x =r 1 for any kind x of measure and any type of object y, i.e., realization ry of principle y is a degree of y. More compound situation exists for intensional kinds of measures of realization of extensional. 

I shall understand measure |rb|1in as measure of dependence of elements of rb. I shall propose that every element x of rb can be model for any other element of rb (including the case when x can be model for itself). Let M2(x) be set of models of element x, where x ( rb and M2(x) ( rb. Set M2(x) can change from {x} to rb (i.e., if x is element of rb, then M2(x) always includes x). Then one can define measure |M2(x)|ex relatively rb as maximum of realization of M2(x). Namely we obtain here:

1. |M2(x)|ex =r 1 (  M2(x) 
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=

 rb

2. |M2(x)|ex =r 0 (  M2(x) 
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=

 ( 

3. M2(x) ( rb (  |M2(x)|ex ( |rb|ex 

In this case we can form measure |rb|1in as a function F(|M2(x1)|ex, |M2(x2)|ex, |M2(x3)|ex,…) of all measures |M2(x)|ex for all elements of rb. I shall propose that function F must be monotonically increasing on measures of every element of rb. Therefore measure |rb|1in expresses the fact how far every element x of rb includes, as own modes, modes x(y – “x-under-the-condition-y”, where y is also element of rb. The more x includes such modes the more degree of dependence of x from another elements of rb. 

Second intensional measure |rb|2in can be expressed, for example, as degree of completeness of rb. In the simplest case such measure intends that every element from rb can be represented as an element of some group, and degree of completeness is degree of closeness of sum of all elements from rb to group null. 

One can exist a set of another intensional measures |rb|nin, where n > 2, expressing those or another aspect of realization of whole in own extensional. In any case we have that the more separate measures, extensional or intensional, of rb, the more measure of realization of whole, i.e. measure |a|. Therefore measure |a| is also a function G(|rb|ex, |rb|1in, …, |rb|kin) of separate measures of rb. I shall propose that function G must be also monotonically increasing on every separate measure of rb. On the other hand there can be the case when separate measures is also functions of measure of realization of whole: |rb|ex =r G0(|a|) and |rb|iin =r Gi(|a|), i = 1,2,…,k, where functions Gn, n=0,1,2,…,k, are monotonically increasing on its arguments. Therefore realization of whole helps to realization of extensional of whole, and vice versa. Separate intensional measures of realization of extensional rb intends that there exist different structures on rb, for example, measure |rb|1in intends structure of dependences between elements, measure |rb|2in intends some group structure on rb, etc. All such structures are those or another realizations of whole too. They express principle of whole as i-atom-in-the-state-of-differentiation (divisibility). Hence it is necessary to introduce such structures in the explicit form. I shall denote them as Si(rb), i=1,2,…,k. Structure Si(rb) is characterized by corresponding intensional measure |rb|iin. Then one should to speak that whole realizes itself not only in extensional form but in the form of different structures. Evidently variety of wholes connects with variety of structural realizations of wholes. However logic of whole can be already expressed in the simplest type of such structures, namely, in pure extensional of the whole. Such simplest kind of the whole can be called as Homogeneouse Whole. Realization of this whole connects only with increasing of rb from null set to full extensional b, i.e., only with measure |rb|ex. 

In general case mesure can be defined on Boolean algebra of moduses. Namely the following properties must be fulfiled here:

Ms1. If a is modus, then |a| is measure (real number) of a, and |a| ( 0

Ms2. b ( a ( |a| ( |b| 

Ms3. Set(a) ( (x(x ( a ( Modus(x)) ( (x(y(((x=y) ( x(y = 
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If a ( b, then |b| ( |a| and, hence, ( =r 
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( [0,1]. I shall use the following notation here:

D(1. a (( b ( a ( b ( ( =r 
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, where “a (( b” can be read as “b is mode of modus a with degree (”

D(2.  a( ( x ( (b(a ( b ( ( =r 
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 ( b ( x), here term “a(” is read as “degree ( of a ”
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